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Abstract 

This works makes a compelling case for simulation as an attractive tool in 

designing cutting-edge remote sensing systems to generate the sheer volume of data 

required for a reasonable trade study.  The generalized approach presented here allows 

multimodal system designers to tailor target and sensor parameters for their particular 

scenarios of interest via synthetic image generation tools, ensuring that resources are best 

allocated while sensors are still in the design phase.  Additionally, sensor operators can 

use the customizable process showcased here to optimize image collection parameters for 

existing sensors.   

In the remote sensing community, polarimetric capabilities are often seen as a tool 

without a widely accepted mission.  This study proposes incorporating a polarimetric and 

spectral sensor in a multimodal architecture to improve target detection performance in 

an urban environment.  Two novel multimodal fusion algorithms are proposed—one for 

the pixel level, and another for the decision level.  A synthetic urban scene is rendered for 

355 unique combinations of illumination condition and sensor viewing geometry with the 

Digital Imaging and Remote Sensing Image Generation (DIRSIG) model, and then 

validated to ensure the presence of enough background clutter.  The utility of polarimetric 

information is shown to vary with the sun-target-sensor geometry, and the decision fusion 

algorithm is shown to generally outperform the pixel fusion algorithm.  The results 

essentially suggest that polarimetric information may be leveraged to restore the 

capabilities of a spectral sensor if forced to image under less than ideal circumstances.       
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1 Introduction 

In August 2008, Dr. Pete Rustan, then director of the Ground Enterprise 

Directorate of the National Reconnaissance Office, identified high value target location 

and tracking as one of the fundamental problems facing the intelligence community 

[Rustan 2008].  Researchers with the Air Force Research Laboratory have stressed the 

importance of detecting targets hidden in natural and man-made clutter, and described 

efforts to exploit hyperspectral imaging capabilities for automated target recognition 

[Eismann 2006].  However, the corresponding false alarm rates are often higher than 

desired, especially for small targets in urban areas with a large amount of man-made 

clutter.   

Faced with the possibility of acquiring a new sensor system, the Defense 

Acquisition Guidebook directs government acquisition personnel to consider cost as an 

independent variable [DAG 2010].  Individual system capability requirements are defined 

via a range spanning from thresholds, which must be met, to objectives, which represent 

the ideal capability.  The emphasis on controlling costs often means that the best possible 

system is not actually built—rather, the government trades extra capability in one area to 

meet requirements in others in order to stay within the budget. 

In general, trade studies are used to assess the impact of varying capabilities 

within the requirement range.  As one way to potentially achieve a reduction in spectral 

imaging false alarm rates, it is essential to explore how combining spectral imaging 

capability with a second sensing modality will affect target detection capability in an 

urban environment.  The resulting multimodal sensor system might become effective 

over a wider range of imaging conditions, more effective under ideal conditions, or some 
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combination of both.  In addition, conditions may be identified where no increase in 

performance is observed; potentially preventing an expensive lesson learned only after 

the final system has been deployed. 

Several existing commercial space-based systems incorporate multispectral 

imaging capability, so the potential exists to task a sensor in that class for an urban target 

detection scenario.  However, the coarse spectral resolution of these bands limits the 

ability to make fine distinctions between targets and background with reasonably similar 

spectra, contributing to the false alarm rate.  Adding a second sensor modality to a 

multispectral sensor may significantly improve target detection performance by weeding 

out some false alarms.  Although performance may improve, the final multimodal system 

may still not meet the detection accuracy requirements. 

Alternatively, a hyperspectral sensor with a dramatically larger number of spectral 

bands, as opposed to the four to ten in a common multispectral sensor, could capture 

more spectral data for use in a target detection algorithm.  As a result, the initial number 

of false alarms is likely to be reduced, while no doubt driving a corresponding increase in 

cost.  When a second imaging modality is included in the system, the potential again 

exists for an increase in performance.  Further, because of the increased spectral 

resolution, it is expected that the hyperspectral system’s target detection performance will 

be superior to the multispectral system under similar viewing conditions.  Once the 

potential performance increase is known, the user can decide whether the increase in cost 

is justified. 

The outcomes of this study provide a series of contributions to the field of remote 

sensing.  Two novel fusion algorithms were developed by leveraging the strengths of 
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existing tools to fuse information at either the pixel or decision level.  First, a new pixel-

level fusion algorithm was demonstrated to incorporate multiple sensing modalities for 

target detection applications.  The pixel fusion algorithm combines polarimetric 

information with multispectral or hyperspectral measurements.  Second, a generalized 

decision-level fusion algorithm was showcased.  The decision fusion algorithm combines 

the outputs from different sensing modalities after a different target detection algorithm 

has been applied to each data set.  This dissertation breaks new ground by merging 

relevant theory in the fields of spectral and polarimetric remote sensing for target 

detection applications.   

The foundation of this work was defining a process to quantify the effect of 

incorporating both spectral and polarimetric information into an automated target 

detection scenario via simulation with the Digital Imaging and Remote Sensing Image 

Generation (DIRSIG) model [Ientilucci and Brown 2003].  Specifically, the effect of first 

fusing data from a polarimetric sensor with data from a multispectral sensor, then fusing 

the same data from a polarimetric sensor with data from a hyperspectral sensor were 

quantified.  A scenario with an urban environment was examined, and the available trade 

space was mapped as a function of the viewing geometry, illumination conditions and 

signal-to-noise ratios (SNR) of the chosen sensors. 

Once the initial results demonstrated that incorporating additional polarimetric 

information may enable suitable performance with a less capable spectral sensor, a series 

of trade studies was carried out to assess how varying the spectral SNR, spectral ground 

sample distance (GSD), or target spectrum affected the impact of spectral and 

polarimetric data fusion via the spectral / polarimetric integration (SPI) algorithm for a 
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notional multimodal sensor.  A field experiment was designed to further exploit the 

DIRSIG simulation results and apply the fusion algorithms to real data by constructing a 

small-scale scene of model cars and bits of urban clutter.   

Finally, emerging research at RIT suggested yet another avenue to explore with 

the spectral/polarimetric fusion concept.  Therefore, a process was defined to model a 

particular set of image acquisition scenarios, to determine which polarimetric image 

(from a set of many) will produce the most impact on target detection performance, to 

quantify the impact of incorporating polarimetric information from multiple viewing 

geometries and to evaluate the performance degradation introduced by a reasonable 

degree of registration error.  

In summary, perhaps the most important contribution to the remote sensing 

community from this dissertation was the demonstration of a generalized approach to 

performing trade space evaluations via synthetic image generation tools.  Simulation is an 

attractive alternative for cutting-edge systems because of the sheer volume of data 

required for a reasonable trade study, especially when multimodal sensors are considered.  

However, the available trade space is enormous, and compromises must be made in terms 

of what points are sampled because of finite computational resources.  A generalized 

trade space evaluation tool therefore helps to quickly bound the problem by sampling the 

most extreme cases, and areas in between can then be sampled in ever finer resolution to 

hone in on any dramatic changes in performance.  System designers can thus tailor the 

target and sensor parameters to their particular scenario of interest and determine how to 

best allocate their resources.  Further, users of existing joint multispectral/hyperspectral 



 

5 

and polarimetric sensors are presented with a method to determine the optimum tasking 

conditions for their hybrid system.  
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2 Project Overview 

2.1 Research Questions 

The foundation of this research was an investigation into the effect of fusing 

existing multispectral or hyperspectral sensor data with polarimetric information from a 

second sensor in an urban target detection application.  This project assumed a 

multispectral or hyperspectral sensor with fixed capabilities had been designed and 

combined a polarimetric sensor with each of the above mentioned sensors to assess the 

benefits from a multimodal system.  A performance improvement was defined as an 

enhanced probability of detection at a fixed probability of a false alarm when the receiver 

operating characteristic (ROC) curve for the multimodal system was compared to the 

ROC curve for only the given multispectral or hyperspectral system under the same 

conditions.  For the initial part of this study, two potential scenarios were examined.   

In the first case, the polarimetric sensor was co-located with the multispectral or 

hyperspectral sensor, such that the viewing geometries for both sensors were identical.  I 

tested whether fusing data from the two sensors improved automated target detection 

performance for a range of viewing geometries, illumination conditions and reasonable 

sensor SNR values.   

In the second case, the polarimetric sensor was on a different platform from the 

multispectral or hyperspectral sensor, with each sensor optimally positioned for a 

particular set of illumination conditions.  With this scenario, I established the maximum 

improvement in performance that could be expected from the given multimodal system 

across a range of reasonable SNR values for each instrument. 
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2.2 Objectives 

There were a number of steps required to complete the study at the foundation of 

this project, and they are outlined below. 

1. Define a relevant scenario.  The comments in Sec. 1 indicate a useful analysis of 

sensor performance consists of attempting to detect a specific type of vehicle 

target in an urban environment under varying illumination and viewing 

conditions, with the targets located in varying degrees of concealment and sensors 

having a range of SNR values.  Because of the vast number of combinations in 

this trade space, and lack of available hardware or actual simultaneous data, 

simulation presents a practical method to explore the options. 

2. Select an effective combination of sensor modalities.  Because some of the 

bands in a hyperspectral system are highly correlated, a point can be reached 

where little information is added by considering more data [Prasad and Bruce 

2008].  Along these same lines, Petrakos et al (2001) found that maximizing the 

increase in accuracy of a combined classifier depends on fusing classifiers that 

often do not agree—ideally, they would be uncorrelated with each other, yet 

correlated with the target.  Therefore, a study was carried out to demonstrate that 

classifiers exploiting the chosen sensing modalities were relatively uncorrelated 

for the given target detection scenario. 

3. Design a model scene.  To plausibly explore the trade space, a synthetic image 

generation model was required to render a radiometrically correct urban scene.  
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The synthetic scene must be geometrically plausible, with the material 

characteristics in the scene characterized to a high degree of spatial, spectral, and 

polarimetric fidelity.  The model must then be capable of reasonably propagating 

radiation from any sources through the atmosphere and correctly portraying any 

interactions with objects in the scene.  Finally, the model must be able to 

accurately simulate the effect of a variety of sensor characteristics on the image.    

4. Render multiple versions of the scene, varying a range of relevant 

parameters.  Schott (2007) explained that the sensor reaching radiance depends, 

among other things, on the illumination source’s zenith and azimuth angles, the 

sensor’s zenith and azimuth angles, and the shape factor of the target.  In addition 

to effects from the overall sensor reaching radiance, Schott (2009) noted the 

ability to distinguish the target from the background is also highly sensor 

dependent, depending in part on SNR for most systems and the degree of 

polarization (DOP) for any polarimetric sensor.  Therefore, a range of potentially 

useful values for each of these variables was identified, and the simulation 

executed for each case to isolate the effect of changing one variable at a time. 

5. Compensate the spectral data for atmospheric effects.  The simulated radiance 

reaching the sensor is a function of both the scene characteristics and any 

modeled atmospheric effects.  In an actual target detection application based on 

information from spectral libraries, it is reasonable to expect a user to perform 

some type of atmospheric compensation, but the focus of this project was not to 

determine which atmospheric compensation technique is best.  Therefore, 

considering the vast number of different simulated scenes to be analyzed, a 
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reasonable atmospheric compensation technique was applied with an emphasis on 

simplicity and speed. 

6. Simulate some degree of registration error between the two modalities.  

Although the synthetic imagery for a given version of the scene consisted of 

perfectly registered bands for both sensing modalities, exact registration between 

the two modalities is unlikely in a practical application.  Therefore, a small 

amount of offset was induced to account for residual errors generated from 

applying a registration routine to actual data. 

7. Fuse co-located sensor outputs in a meaningful manner.  After establishing the 

baseline sensor performance, the data captured from the two sensors was 

combined via a fusion algorithm to enhance the probability of target detection.  

The type of data to be combined was identified, and then a methodology was 

constructed to analyze the result and exploit the unique contributions of each 

sensor. 

8. Quantify any impact on target detection.  When the fusion product had been 

assembled, improvement was defined in terms of an increased probability of 

target detection over the data for a fixed probability of a false alarm.  In essence, 

the ROC curve for the fusion product was compared to the ROC curve of the 

original sensor for each of the cases in Step 5, and any areas of performance 

improvement or detriment were noted.  A crucial part of this analysis was having 

enough pixels to quantify low enough false alarm rates for a practical application, 

so a balance was struck between the extent of the modeled scene and the required 

computational effort. 
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9. Identify viewing geometries expected to maximize target detection 

improvement for dispersed sensors.  Since the different sensor modalities will 

likely have different measures of merit for any target detection algorithm 

employed, the ideal viewing geometries for each sensor are unlikely to be 

identical.  The data produced using each individual modality was investigated, 

and compared to relevant theory, to identify each sensor’s optimum viewing 

geometry. 

10. Register the images generated by each sensor.  Before data fusion can occur, 

the data were registered into a common space.  A process for aligning common 

scene features in images from each sensor was determined and executed for the 

limited number of viewing geometries identified in Step 9. 

11. Establish the maximum attainable target detection improvement with the 

decision level fusion algorithm for dispersed sensors.  The fusion algorithm 

applied in Step 7 should produce the best attainable probability of target detection 

at a fixed false alarm rate with data obtained from each sensor when positioned in 

its optimum viewing geometry.  Therefore, the performance of the fused sensor 

systems was compared with the original sensor’s performance, in its optimum 

viewing geometry, to again quantify via ROC curves the maximum attainable 

improvement in performance.          
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3 Background 

3.1 Section Overview 

This section describes previously published research and demonstrated 

operational capabilities to examine the effect of multimodal data fusion in a target 

detection scenario.  Before developing an experimental method, the current state of the 

art is assessed by examining existing sensor systems, understanding the different data 

fusion levels, and reviewing established decision level fusion techniques.  Further, a brief 

overview of existing sensing modalities is conducted, with an emphasis on the emerging 

field of polarimetric remote sensing.  After a recap of previously published multimodal 

sensor fusion efforts, the capabilities of several synthetic image generation models are 

examined.  Finally, several existing atmospheric compensation methods and target 

detection algorithms are assessed for potential use in this project. 

3.2 Existing Systems 

Several commercial space-based operational sensors are currently capable of high 

spatial resolution panchromatic imaging, with some also capturing a modest number of 

spectral channels with a significantly lower ground sample distance (GSD).  In particular, 

the satellites operated by DigitalGlobe and GeoEye are among the most recognized and 

illustrate the current commercial space-based state of the art.   

The IKONOS satellite, launched in 1999 and currently operated by GeoEye, was 

among the first commercial satellites to permit public access to high spatial resolution 

imagery.  In addition to providing a 0.82 m panchromatic GSD at nadir, the sensor also 

has four multispectral bands—red, green, blue, and near-IR—with a GSD of 4 m 
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[GeoEye 2009].  Additionally, the sensor can capture images up to 60° off nadir, 

potentially imaging the same target from several different points of view.   

Further pushing the envelope, DigitalGlobe’s QuickBird satellite, launched in 

2001, is capable of 60 cm panchromatic GSD and 2.4 m multispectral GSD at nadir 

[DigitalGlobe 2009].  Although QuickBird’s multispectral capability is similar to 

IKONOS’s, with red, green, blue, and near-IR channels, QuickBird is different because it 

can alter its pointing direction in both the across-track and along-track direction.  

However, the satellite’s maximum slew in the across-track direction is only ± 30° off 

nadir.  To meet the growing public demand for high spatial resolution imagery, and 

reduce the image collection burden on QuickBird, DigitalGlobe launched the 

WorldView-1 satellite in 2007.  Although the sensor only has a panchromatic band, it is 

capable of a 50 cm GSD at nadir with the ability to slew ± 45° off nadir, with higher 

angles being selectively available [Digital Globe 2009]. 

The next generation of commercial satellites sought to combine a high spatial 

resolution, multispectral imaging capability and significant spacecraft agility.  The 

GeoEye-1 satellite was launched in 2008, boasting a panchromatic GSD of 0.41 m at 

nadir and the traditional red, green, blue and near-IR multispectral bands with a GSD of 

1.65 m at nadir.  Most notably, the satellite has the incredible ability to rotate or swivel 

forward, backward, or side-to-side—essentially allowing imaging in any direction, at 

different times of day [GeoEye 2009].  DigitalGlobe’s WorldView-2 satellite, launched 

in late 2009, is described as having similar spatial resolutions with a panchromatic GSD 

of 0.46 m and a multispectral GSD of 1.84 m at nadir [DigitalGlobe 2009].  However, the 

sensor has a unique combination of spectral bands:  the typical red, green, blue, and near-
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IR bands are included, along with additional red edge, yellow, coastal, and near-IR2 

bands.  The four additional multispectral bands are planned to provide enhanced 

information for studying regions near water.  As with WorldView-1, the satellite can slew 

± 45° off nadir with higher angles selectively available.  Table 1 summarizes the key 

capabilities of operational commercial high spatial resolution imaging satellites. 

Table 1.  Summary of key capabilities for operational high spatial resolution commercial imaging 

satellites, as advertised by Digital Globe and GeoEye. 

Satellite GSD 

(Panchromatic / 

Multispectral) 

Number of 

Spectral 

Channels 

Max Slew 

Angle  

(Across-Track) 

Along-Track 

Pointing 

Capability? 

IKONOS 0.82 m / 4 m 4 60° No 

QuickBird 0.60 m / 2.4 m 4 30° Yes 

WorldView-1 0.50 m / --- 1 45° No 

GeoEye-1 0.41 m / 1.65 m 4 Any angle Yes 

WorldView-2 0.46 / 1.84 m 8 45° No 

 

In contrast to sensors with high spatial resolution and a few spectral bands, other 

operational systems, dubbed hyperspectral sensors, have demonstrated the ability to 

acquire spectral information over a significantly larger number of bands.  When the 

incoming signal is divided into such fine spectral bands, a trade must occur between 

spatial, spectral and radiometric resolution [Schott 2007].  To compensate for the 

decreased number of signal photons in each narrow spectral band, the GSD must be 

increased or a lower instrument signal-to-noise ratio (SNR) must be accepted.  Two of 

the most widely known hyperspectral sensors are NASA’s Airborne Visible Infrared 

Imaging Spectrometer (AVIRIS) and the Hyperion instrument onboard the EO-1 satellite. 
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AVIRIS’s 224 spectral bands span the region from 0.4 μm to 2.5 μm in 10 nm 

increments, achieving a spectral resolution much higher than that of the previously 

described satellites.  Since the instrument can be flown on different aircraft, the GSD 

depends on the chosen altitude.  Kruse et al. (2003) assessed AVIRIS’s capabilities to 

quantify the instrument’s SNR, and calculated an SNR around 150 for most channels for 

a 50% reflector.  Encouraged by results obtained from AVIRIS, NASA launched the EO-

1 satellite in 2000, using the Hyperion instrument to demonstrate high spectral resolution 

imaging from space.  After the one year technology demo was complete, the U.S. 

Geological Survey (USGS) assumed operational control of the satellite.  The Hyperion 

instrument’s capabilities are quite similar to AVIRIS’s, resolving 220 spectral bands and 

spanning the region from 0.4 μm to 2.5 μm in 10 nm increments with a 30 m GSD 

[USGS 2009].  Additionally, the spacecraft can point ± 20° off nadir to acquire imagery.  

Boeing’s Hyperion validation report highlighted that the sensor SNR for a 30% reflector 

depended on the spectral region of interest:  140-190 in the VNIR, 96 near the center of 

the SWIR (~1225 nm), but only 38 near the long edge of the SWIR (~2125 nm) 

[Pearlman 2003]. 

In addition to space-based systems driving toward high spatial or spectral 

resolution, the US military has emphasized flexibility in remote sensing applications, 

effectively employing unmanned aerial vehicles (UAVs) like the Global Hawk and 

Predator.  The Global Hawk is designed to loiter at an altitude of 65,000 ft and is 

equipped with electro-optical (EO), infrared (IR) and synthetic aperture radar (SAR) 

sensors [Leachtenauer and Driggers 2001]. The EO sensor response spans the 0.4-0.8 μm 

range and the IR sensor is sensitive across the 3.6-5.0 μm range.  Further, the EO sensor 
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is specified to provide a visible National Image Interpretability Rating Scale (NIIRS) 

value of 6.5 at a 45° elevation angle (28 km slant range) and the IR sensor is specified to 

provide an infrared NIIRS of 5.5 at a 45° elevation angle (28-km slant range).  Schott 

(2007) calculated that a 10-inch GSD roughly corresponded to a NIIRS of 6.9, so the 

visible GSD specification of the Global Hawk could be about 0.3 m for 45° off nadir, and 

should improve as the viewing angle approached nadir. 

According to the official US Air Force factsheet, the Predator system is a 

remotely piloted vehicle with an operational ceiling of 7620 m equipped with a variable-

aperture TV camera and a variable-aperture IR camera.  Specifically, the EO camera has 

a 10:1 zoom, with the focal length varying from 16-160 mm and the FOV varying from 

2.3 by 1.7 degrees to 23 by 17 degrees [Leachtenauer and Driggers 2001].  The GSD in 

the visible range therefore depends on the zoom setting and aircraft altitude, providing a 

significant degree of flexibility. 

The above examples of existing systems demonstrate what levels of spatial, 

spectral and signal resolution are currently attainable.  Ideally, a new system would seek 

to maximize all three, but practically, designers must make trades within the three spaces 

to meet mission requirements.  This dissertation attempts to identify any regions within 

the trade space where an increase in capability might provide a dramatically improved 

target detection performance in an urban environment.  One way to improve target 

detection capability might be to combine data from different sensors, a process known as 

data fusion. 
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3.3 Data Fusion Levels 

When approaching the issue of fusing data from multiple sources, the first task is to 

determine the level of fusion that will occur.  Essentially, one must determine the point 

where information from the first source will first interact with information from the 

second source.  The three commonly accepted levels of data fusion in remote sensing 

applications are the pixel level, feature level and decision level [Pohl et al. 1998].  Figure 

1 shows how the three fusion levels are related to each other. 

 
Figure 1.  Potential levels of data fusion and their relation to any image processing steps.  Image 

courtesy of Pohl et al., 1998. 

 

Pixel level data fusion describes combining information from each source at the 

lowest possible processing level, in effect merging different measurements of the same 

physical parameter.  One example of this type of data fusion is the spatial resolution 

enhancement of multispectral data using higher spatial resolution panchromatic 

information [Price 1987].  Given a lower GSD multispectral super pixel, the signal 

strength of the smaller GSD panchromatic pixels can be used to infer what the spectral 

characteristics of the smaller pixels might have been.  The resulting product is a 

multispectral image with a GSD equivalent to the original higher spatial resolution 
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panchromatic image.  Although the two images must be very well geometrically 

registered to avoid artifacts and misinterpretation, pixel level fusion preserves the most 

original data [Pohl et al. 1998]. 

Feature level data fusion implies some processing has already taken place to 

identify objects consisting of multiple pixels.  Pohl et al. (1998) described a segmentation 

application where individual buildings were extracted from an urban scene by exploiting 

extent, shape and neighborhood, citing a dissertation written in French [Mangolini 1994].  

Further, the corresponding structures used in feature level fusion tend to relax the 

geometric accuracy required, but some information is lost during the feature extraction 

process. 

Decision level fusion consists of individually processing images, then combining 

the results in some way to reinforce common interpretations and resolve discrepancies.  

The final product thus provides a better understanding of the scene.  Petrakos et al. 

(2001) cautioned that the correlation between classifiers used in decision level fusion can 

limit the potential accuracy increase.  In brief, if two classifiers always agree or always 

disagree, no new information is gained by combining their outputs.  Table 2 demonstrates 

how to determine the maximum potential increase in effectiveness obtained by fusing 

outputs from two different classifiers.   

Table 2.  Table of dichotomous outcome for two classifiers, based on Petrakos et al. (2001) 

Classifier Comparison 
Classifier 2 – Correct 

classification 

Classifier 2 – Incorrect 

classification 

Classifier 1 – Correct 

classification 
Region 1 Region 2 

Classifier 1 – Incorrect 

classification 
Region 3 Region 4 
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Region 1 represents the pixels that will never be misclassified in a combination.  If the 

number of pixels in Region 1 is divided by the total number of pixels, the result is the 

lower limit of the classification accuracy of any combined classification scheme.  Region 

4 represents the pixels that will never be classified correctly by a given combination, and 

dividing the number of pixels in Region 4 by the number of total pixels provides an upper 

bound on the fused classification accuracy.  Regions 2 and 3 are therefore a relative 

measure of classifier effectiveness, and illustrate the potential performance increase 

attainable with a data fusion algorithm. 

 This section has divided data fusion efforts into three levels, based on the amount 

of processing that occurs before fusion.  At the pixel level, raw measurements of the 

same parameter are combined in some fashion, making the result highly dependent on 

accurate registration.  Fusing data at the feature level involves identifying objects through 

their shape, extent, or neighborhood, slightly reducing the dependence on accurate 

registration but preserving less of the original information.  Finally, fusing data at the 

decision level consists of processing sensor outputs independently, and often combining 

metrics like a classification score rather than measurements of actual data.  Since data 

from ill-correlated sensors can be combined via decision level fusion, a great opportunity 

exists to exploit decision level fusion in multimodal target detection scenarios.  

Therefore, specific decision level fusion techniques will be investigated. 

3.4 Decision Level Fusion Techniques 

Decision level fusion techniques are based either on mathematical manipulations 

of some score metric from different sensors, or some form of voting based on the opinion 
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of all sensors involved.  The most common mathematical manipulations are a linear 

opinion pool (LOP), logarithmic opinion pool (LOGP) and a pseudo-inverse solution.  In 

contrast, the much simpler voting schemes are based either on some form of majority rule 

or using the result with the highest confidence level. 

The linear opinion pool (LOP) has the form shown in Eq. 1, where the group 

probability of belonging to class wj is given by Cj(X) if n data sources are used  

n

i

ijij xwpXC
1

)|()(     (1) 

where ],,[ 1 nxxX  is an input data vector, where each xi is a source-specific pattern 

which is multidimensional if the data source is multidimensional, )|( ij xwp is a source 

specific posterior probability and ),,1( nii   are source-specific weights which 

control the relative influence of the data sources [Petrakos et al. 2001].  One weakness of 

the LOP is that it shows dictatorship when Bayes’ theorem is applied and it is not 

externally Bayesian [Benediktsson and Swain 1992].  The second technique, the 

logarithmic opinion pool (LOGP), has the form shown in Eq. 2, where the group 

probability of belonging to class wj is given by Lj(X) if n data sources are used [Petrakos 

et al. 2001]: 

n

i

ijj
ixwpXL

1

)|()(     (2) 

The LOGP differs from the LOP in that it is unimodal and less dispersed, while also 

treating the data sources independently [Benediktsson et al. 1999].  Additionally, a zero 

vote from any source is an automatic veto.  In either case, the weights should be high 

when the data sources are expected to contribute to higher accuracy, and low when the 
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additional data provides little added value.  Finally, a pseudo-inverse solution can be 

obtained by solving the problem with a linear regression model, where the inputs are the 

spatial and spectral class-conditional probabilities and the outputs are the observed data 

values [Benediktsson et al. 2004]. 

Decision level fusion techniques based on voting have been demonstrated in 

hyperspectral classification applications.  Perhaps the simplest method is to apply the 

classification result from the sensor with the maximum degree of confidence in its 

classification result [Benediktsson et al. 2004].  A more sophisticated approach, qualified 

majority voting (QMV), is designed to better exploit classifiers of disparate expertise.  

The QMV fusion algorithm allows each classifier to influence the decision, but varies the 

impact each classifier has on the final decision by modifying the vote by some weighting 

factor [Cheriyadat et al. (2003)].  The final decision is then the outcome with the most 

votes.  In practice, the weighting factor is based on the degree of confidence the 

experimenter has in each classifier.   

Although several different decision level fusion schemes have been described, the 

ideal fusion method is highly application and data dependent [Pohl et al. 1998].  In 

particular, the issues of differing classifier expertise and potential veto power are 

especially important when considering potential fusion techniques.  In a multimodal 

sensor target detection application, if the sensors measure ill-correlated physical 

phenomena under the same illumination conditions, it is likely that more confidence will 

be placed in the results from one sensor than from another, and the LOP, LOGP and 

QMV methods account for this.  However, in a LOGP, if one sensor is sure that a given 

pixel is not a target, the pixel is ignored regardless of the other sensors’ opinions.  The 
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veto effect could be good or bad, but the issue of how to address veto power must be 

considered in any decision level fusion scheme.  In general, the way veto power is 

handled depends on the sensing modalities used in a particular scenario. 

3.5 Potential Sensing Modalities 

Several different sensing modalities could be exploited for the urban target 

detection problem, and each has potential strengths and weaknesses that must be 

considered.  The modalities potentially applicable for use in this work are synthetic 

aperture radar (SAR), panchromatic imaging, multispectral imaging, hyperspectral 

imaging, polarimetric imaging, and light detection and ranging (LIDAR).   

SAR data has been previously analyzed via simulation with automatic target 

detection algorithms [Douglas et al. 2004].  A significant amount of data is required to 

accurately map the trade space associated with incorporating a second imaging modality.  

This study therefore requires either an existing cache of SAR and spectral urban data, 

obtained simultaneously, for a variety of viewing geometries and illumination conditions.  

Alternatively, the data could be generated through rigorous simulation of a notional scene 

as observed by both modalities under the same variety of viewing conditions.  However, 

since no such cache of simultaneous SAR and spectral urban data is freely available for 

analysis, and since RIT doesn’t currently have access to a rigorous simulation program 

capable of integrating SAR with other optical modalities, SAR must be ruled out for 

consideration in this study. 

Panchromatic imaging is often an attractive sensing modality, as the existing 

satellites described in Sec. 3.2 show.  Since photons are integrated over a wide spectral 
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range, the instrument SNR can be quite high.  Alternatively, the increase in signal 

photons captured at the focal plane means the detector size, and therefore the GSD, can 

be much smaller while still maintaining the SNR of a similar multispectral system.  

Although a small GSD panchromatic image allows an analyst to more easily identify 

features, panchromatic imagery is of limited use in automated target detection scenarios.  

The nature of panchromatic imagery means only one image is available for processing, 

and target detection would probably occur by using a spatial matched filter.  In the urban 

target detection scenario addressed by this project, the use of a spatial matched filter 

becomes problematic for several reasons.  First, because of the variety of different 

viewing geometries, matched filters must be generated for all possible orientations of the 

target vehicle.  Next, the background is expected to be quite cluttered, meaning the target 

will likely be partially obscured by trees, buildings, or other vehicles, reducing the 

matched filter’s effectiveness.  Finally, if the sensor is positioned at a fixed altitude but is 

agile enough to look significantly off nadir, the range to the target and therefore scale on 

the ground can change significantly.  The variety of scaled replicas of the matched filter 

required for every possible vehicle orientation would dramatically increase the 

computational requirements for this scenario, making it an unrealistic option. 

Multispectral imaging, referring to data captured with up to ten spectral bands, is 

especially attractive for this project because of the relatively widespread availability of 

these sensors.  Multispectral systems range in complexity from the advanced satellites 

outlined in Sec. 3.2 to airborne systems like the WASP-Lite (2009), flown in a Cessna by 

RIT’s Laboratory for Imaging Algorithms and Systems.  In addition, incorporating a few 

bands of spectral information means images can be analyzed by either spatial or spectral 
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techniques, or a combination of both, for a target detection application.  Although 

splitting the incoming signal spectrally impacts the instrument SNR, a reasonable GSD 

can still be maintained.  One can easily envision a multispectral system mounted on a 

UAV orbiting an urban environment searching for targets, making this a critical modality 

to consider when mapping the available trade space. 

Hyperspectral systems, with tens or hundreds of spectral bands, acquire a massive 

amount of data.  Schott (2007) summarizes many effective existing hyperspectral target 

detection algorithms, but those algorithms which increase performance within an imaging 

modality tend to require more processing time or human involvement, or both.  

Additionally, new articles frequently appear in the literature detailing better hyperspectral 

target detection and classification algorithms [Fauvel et al. 2008] [Huang and Zhang 

2008] [Prasad and Bruce 2008].  Since it seems that no consensus has occurred within the 

community with regards to a universally ―best‖ algorithm, the challenge is to find a 

reasonably effective and efficient target detection algorithm to model the baseline system 

performance for this scenario. 

Polarimetric remote sensing in the visible and thermal infrared is a relatively new 

and largely undeveloped field [Schott 2009].  Anomaly detection algorithms have 

achieved some degree of success with polarimetric data in separating man-made 

materials from the natural background [Cavanaugh et al. 2006].  For the urban target 

detection scenario, a significant portion of the background is man-made material, so the 

anomaly detection capability may be reduced.  Further, polarimetric sensing is highly 

sensitive to illumination and viewing geometries [Devaraj et al. 2007].  However, since 

polarimetric anomaly detection algorithms exploit different phenomenon than spectral 
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algorithms, a polarimetric remote sensor could potentially complement a multispectral or 

hyperspectral sensor for urban target detection applications. 

As an alternative to passive systems that are affected significantly by solar 

illumination conditions, active LIDAR systems have also been used in seaborne target 

detection applications [Van den Heuvel et al. 2008].  Although range information can be 

extracted from reflective scene elements, identifying specific targets in a cluttered urban 

environment seems to be a computationally intensive task subject to some of the same 

limitations as panchromatic imaging.  If done correctly, LIDAR data could be used to aid 

registration of the polarimetric data with the spectral data [Lach et al. 2009].  Further, 

LIDAR data has been fused with aerial imagery to extract individual building footprints, 

with a GSD of about 1 m, but several hundred pulses were needed per pixel [Zabuawala 

et al. 2009].  However, it may be a challenge with LIDAR to obtain this resolution over a 

notional 1 km
2
 urban environment, in a timely fashion, without being apparent to 

observers below.    

In summary, SAR, panchromatic EO, multispectral, hyperspectral, polarimetric 

and LIDAR systems could all potentially be combined in some fashion as part of a 

decision level data fusion experiment.  Although most of these modalities have been 

extensively employed in the remote sensing field, polarimetric sensing is an emerging 

capability.  Before investigating previous fusion demonstrations, a high-level overview of 

polarimetric remote sensing will be conducted. 
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3.6 Polarimetric Remote Sensing 

A full explanation of the field of polarimetric remote sensing would require an 

entire text, so this section is intended to provide a basic overview on how to manipulate 

measured polarimetric information for later exploitation.  Polarimetric information is 

derived from a combination of the signal obtained by viewing the scene through various 

linearly polarized filters, and typically expressed as a vector of Stokes parameters based 

on irradiance [Schott 2009].  However, the direction of the polarization in the sensor 

reaching radiance can be expressed through the unnormalized Stokes parameters, Ŝ , as 

shown in Eqs. 3 - 6 below: 

VH LLS0
ˆ      (3) 

VH LLS1
ˆ      (4) 

45452
ˆ LLS     (5) 

LR LLS3
ˆ      (6) 

where 0Ŝ  is the total incident radiance, 
1Ŝ  is related to horizontal polarization, 

2Ŝ
 
is 

related to the polarization at 45°, and 3Ŝ
 
is related to the circular polarization of the 

incident radiance.  The 
1Ŝ , 

2Ŝ
 
and 3Ŝ  values can be either positive or negative, 

depending on which type of polarization dominates.  In Eqs. 3-6, L represents the sensor 

reaching radiance while the subscript denotes the use of a polarizing filter oriented to 

transmit only radiance polarized horizontally (H), vertically (V), diagonally (+45 or -45) 

or circularly (R or L).  
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Another way to express the polarization state of the incoming radiation is through 

the normalized Stokes vector, S, arranged as shown in Eq. 7 [Schott 2009] 
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The degree of polarization (DOP) and the degree of linear polarization (DOLP) in the 

incoming radiance are calculated via Eqs. 8 and 9. 
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In practice, 03S for most passive sensing applications, so DOLPDOP  [Schott 

2009]. 

Because the polarimetric components of the Stokes beam obey linear 

superposition, the incoming energy can be represented as the sum of a completely 

polarized component and a randomly polarized, or completely unpolarized, component 

by incorporating the DOP as shown in Eq. 10 [Schott 2009]: 
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Again, for a passive sensing application, the radiance vector can be simplified by 

neglecting circular polarization, as shown in Eq. 11: 
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If a polarization sensitive sensor is incorporated, the instrument is represented as a 

Mueller matrix, MI, and relates the Stokes vector of the incident radiance, SI, to the 

Stokes vector recorded by the detector, SD, as shown in Eq. 12 [Schott 2009]: 

IID SMS      (12) 

 The ability to detect an object’s polarimetric signature is highly dependent on the 

sun-target-sensor viewing geometry [Schott 2009].  Specifically, the Fresnel reflection 

coefficients of polarization states parallel and perpendicular to the plane of incidence, of 

a specular surface, depend differently on incident angle.  As a result, nadir view or 

illumination tends to induce no polarization difference, while larger angles induce a 

larger DOP.  However, as angles get more oblique, the DOP again decreases.  Further, 

the specular component, rather than the diffuse component, of the reflectance tends to 

induce polarization [Schott 2009].  These effects suggest the presence of a polarimetric 

sensing ―sweet spot‖ located azimuthally near the specular component of the reflection 

from the target and at some middle declination angle.  Now that the fundamentals of 

polarimetric information have been described, an in-depth investigation of previous 

multimodal data fusion demonstrations can be conducted. 

3.7 Previous Multimodal Data Fusion Demonstrations 

Several examples of multimodal fusion demonstrations can be found in the 

literature, exploiting different fusion levels for different applications.  In imaging 

applications, spectral data is often fused with either spatial or temporal data for land-use 
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classification.  However, spectral data is more commonly fused with polarimetric data for 

anomaly detection or target detection scenarios. 

One application of data fusion was based solely on the relationship between bands 

of spectral data.  Hyperspectral data was partitioned into contiguous subspaces, 

maximizing the discrimination information in each subspace while minimizing the 

statistical dependence between subspaces [Prasad and Bruce 2008].  Each subspace was 

then treated as a separate source in a multisource classification problem.  Several decision 

level fusion algorithms were employed, classified as either hard decision fusion or soft 

decision fusion.  In hard decision fusion, like QMV, a final decision was based on some 

weighted vote from each data subspace.  Hard decision fusion techniques had the 

advantage of proving relatively insensitive to inaccurate estimates of posterior 

probabilities.  Alternatively, a soft decision fusion technique, like LOP or LOGP used 

some class membership function from every classifier to make the final decision.  For the 

hyperspectral subspace problem, soft decision fusion techniques were more likely to 

provide stable and accurate classification.   

Another application relied solely on hyperspectral data, but used decision level 

fusion to leverage multi-temporal data in an application distinguishing between two 

aquatic vegetation species [Prasad et al. 2008].  Several common classification 

algorithms were used as baselines to determine the fusion system’s effectiveness, and 

majority voting was employed as the decision fusion scheme in all cases.  In the first 

baseline method, linear discriminant analysis (LDA) was conducted for each day, and 

then the LDA outputs from all dates were combined into one common feature space for 

analysis with a single classifier.  In the second baseline approach, hyperspectral 
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signatures from all dates were combined into a single dataset, and the hyperspectral space 

was partitioned into multiple smaller subspaces, with LDA and classification performed 

on each subspace.  The third baseline algorithm again involved merging hyperspectral 

signatures from all dates into a single dataset, projecting the data into a new spaced based 

on LDA (learned from training data), then applying a single classifier.  The proposed 

multi-temporal decision fusion system consisted of classifying each day’s hyperspectral 

data via Gaussian maximum likelihood (GML), then combining those classification 

results over multiple days via majority voting.  For this two-class application, the multi-

temporal fusion system outperformed the baseline algorithms that didn’t fully exploit the 

temporal information. 

In an attempt to better exploit complementary imaging modalities, airborne 

LIDAR data has been fused with hyperspectral data at the pixel level for a seafloor and 

land cover classification problem [Macon et al. 2008].  Since the LIDAR data and 

hyperspectral data were acquired under highly similar environmental conditions, the 

LIDAR data was first used to correct the hyperspectral data to produce a geo-referenced 

image for each flight line.  Radiation transfer equations were then used to estimate the 

seafloor reflectance from the data.  Finally, the results of LIDAR processing were used to 

establish an elevation for each pixel, permitting fine corrections of the seafloor 

reflectance data when known water properties were taken into account.    

Another complementary set of imaging modalities used for decision level fusion 

was multi-frequency polarimetric SAR with a panchromatic EO sensor [Yang and Moon 

2003].  For a land-cover classification application, each data source was independently 

classified using the maximum likelihood classification method, based on a subset of 
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training data, and the classification results were merged using the Dempster-Shafer 

theory of evidence.  The Dempster-Shafter theory measures conflicting results via user 

defined belief and plausibility metrics, and assigns the pixel of interest to the most likely 

class.  Specifically, the belief metric was the sum of user-defined mass functions for each 

class, and the plausibility metric was the maximum class-conditional probability assigned 

by any classifier.  No general rules exist for defining the class mass functions, although 

this step was identified as the most crucial one in the algorithm [Yang and Moon 2003].  

Using a mass function based on all the classification results for pixels in a window 

around the pixel of interest, the fusion algorithm was found to enhance classification 

accuracy when results from the EO and SAR system were compared to results from just 

the EO system. 

One of the more sophisticated techniques to fuse multispectral and panchromatic 

data was an algorithm relying on principal component analysis (PCA) and the discrete 

wavelet transform (DWT) [Chen et al. 2005].  First, both images were geometrically 

registered and the multispectral image was spatially resampled to match the panchromatic 

image.  Next, the first principal component (PC) was obtained from the multispectral 

image via PCA.  Then, the panchromatic was histogram matched to the PC image, and 

wavelet decomposition was performed.  The low frequency coefficients of the PC image 

were then set as the low frequency coefficients of the fused image, but the high-

frequency components were chosen from either the PC image or the panchromatic image 

via a series of decision rules.  Finally, an inverse DWT and inverse PCA were performed 

to generate the spatially enhanced fused image. 
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Attempts to fuse hyperspectral and polarimetric data have occurred at different 

decision levels for a wide variety of applications, essentially limited by the capabilities of 

the hardware available.  In one example, LWIR hyperspectral imagery was combined 

with polarimetric information to determine the near-surface wind vector, sea-surface 

temperature, and surface thermal emission properties [Iannarilli et al. 2000].  The 

hyperspectral and polarimetric data were acquired simultaneously using the InfraRed 

Polarimetric HyperSpectral Imager (IRPHSI) developed by Aerodyne, which was 

designed to be mounted on a ship and consisted of a single focal plane array, 

conventional optics, and no moving parts.  Birefringent crystals were used to influence 

the polarimetric information such that the polarization information modulates the spectral 

information when captured at the focal plane.  A demodulation scheme based on the 

Stokes vectors was used to extract the polarimetric information, and the primary 

advantage of this approach was that the hyperspectral and polarimetric images were 

perfectly registered in both time and space.  From the modulation pattern imposed on the 

spectral data, a pixel fusion technique was carried out to solve for the wave slope, which 

was then used to determine the near-surface wind vector.  Further, the ability to solve for 

the wave slope inversely depended on the GSD, since the polarimetric effects tended to 

average out over larger sample sizes.  This last point illustrates the importance of high-

spatial resolution in any polarimetric system designed for use in anomaly or target 

detection. 

One particular target detection application employing polarimetric sensing was a 

system designed to exploit spectral features in visible and near-IR polarimetric images 

[Duggin and Loe 2002].  In that setup, thin film polarizers were manually rotated 
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between image captures to obtain the polarization measurements required to define three 

of the four Stokes parameters.  Images of a model military vehicle, painted with 

camouflage paint and in a shadow under a platform covered in live leaves, were taken at 

discrete wavelengths over the range from 400 nm to 1 μm.  The intent was to determine 

whether polarimetric information could assist in differentiating man-made targets from 

the background.  In an example of fusion at the pixel level, the polarimetric images from 

the near-infrared were analyzed with an NDVI algorithm and contrast in the resulting 

image provided some ability to separate the target from the background. 

In an attempt to further exploit the combination of spectral and polarimetric 

imaging, an anomaly detection experiment was carried out with a ground-based 

hyperspectral polarimetric imaging test bed [Cavanaugh et al. 2006].  The imaging test 

bed consisted of SWIR and VNIR hyperspectral capabilities, three polarimetric channels 

with linear polarizers set at 0, 60 and 120 degrees, and one high resolution panchromatic 

channel.  Anomaly detection was accomplished by computing the PC transform of a 

hyperspectral image, classifying each pixel via a K-means classifier, and highlighting any 

pixels below some threshold probability of belonging to any of the classes.  Separately, 

the polarimetric images were combined to calculate the DOLP of each pixel in the scene.  

Since the scale of the hyperspectral imagery exactly matched the polarimetric image, the 

images were combined by simply overlaying them such that the resulting pixel value was 

a multiplication of the hyperspectral anomaly score and the DOLP.  Figure 2 summarizes 

the data fusion procedure laid out by Cavanaugh et al. (2006).  Their preliminary results 

showed some ability to detect small man-made targets amidst a natural background, 

although a number of false alarms were also flagged. 
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Figure 2.  Data processing scheme for hyperspectral polarimetric imaging system used by 

Cavanaugh et al. (2006). 

 

Another system with both hyperspectral and polarimetric imaging capabilities was 

demonstrated by Alouini et al. (2009).  The hyperspectral imager spanned the 800 - 2100 

nm range with a spectral resolution of 5 nm.  The system was operated in either active or 

passive mode, and in the active mode nonlinear optical crystals were used to create one of 

five different signal wavelengths.  To acquire images, the camera was operated at twice 

the pulse repetition rate, effectively interleaving an active image with a passive image, 

while rotating the polarization state between active images.  For each image, the passive 

image was subtracted from the active image to eliminate the contribution of ambient 

light.  Therefore, the system effectively became a multispectral sensor, acquiring 

polarization images at five different wavelengths.  In their ground-based target detection 

application, one scene was analyzed with small metal plates located 20 m away from the 

sensor against different types of backgrounds.  Further, a metric called the peak-to-

sidelobe ratio (PSR) was defined, representing the conspicuousness of the peak 
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corresponding to the position of the target in the particular image, with a higher PSR 

providing easier target detection.  Alouini et al. found that the PSR increased with 

wavelength for the intensity image, but that the PSR decreased with wavelength for the 

polarimetric image, and concluded that the intensity and polarimetric images for diffuse 

objects tended to behave in a complementary manner in most cases. 

To recap, spectral data (of various spectral resolutions) has been fused with 

additional spectral data, obtained either in different regions of the spectrum or at different 

times, to enhance classification performance.  Additionally, LIDAR, SAR, and 

polarimetric systems have been used in conjunction with spectral data for land cover 

classification, anomaly detection and target detection applications.  The past successes 

achieved with spectral and polarimetric data suggest that fusing those two data types may 

increase target detection performance.  Further, the fusion demonstrations indicate that 

information can be gained by examining both how anomalous and how target-like a pixel 

appears.  However, the key requirement for multimodal fusion applications is 

simultaneous data acquired by both modalities.  Because of the difficulty involved in 

acquiring simultaneous data for two state of the art systems, under a variety of imaging 

conditions, simulation becomes an attractive option.  Therefore, the capabilities of 

existing software packages must be assessed. 

3.8 Existing Simulation Software 

Several software simulation packages exist, with varying degrees of use and 

acceptance in the remote sensing community.  Results from MODTRAN, IRMA, 

CameoSim, IRHSS, and DIRSIG have been shown in remote sensing literature and 
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conferences for the field.  These tools often began as one specialized application, with 

increasing capabilities provided via extra modules developed over time.   

3.8.1 MODTRAN 

The MODTRAN model [Berk et al. 1989] is probably the most widely used and 

readily available of any of the atmospheric radiation propagation models [Schott 2007].  

MODTRAN assumes the atmosphere is divided into a stack of homogenous layers, with 

the temperatures and concentrations of those layers determined either from user inputs or 

standard atmospheric profiles.  After the user defines a sensor location and view angle, 

the radiance reaching the sensor from a given point is determined by incorporating the 

cumulative transmission effect of each of the atmospheric layers, with a spectral 

resolution as small as 2 cm
-1

.  Additionally, the MODTRAN model allows a sensor to be 

placed on the ground, looking up to space.  Integrating the observed radiance from 

several angles effectively computes the downwelled radiance under the given weather 

conditions.  A limited release version, MODTRAN 4P, is capable of modeling the 

atmospheric effects on radiation with different polarization states, a crucial requirement 

for synthetic polarimetric modeling efforts [Devaraj et al. 2007].  However, MODTRAN 

4P is limited to modeling single scattering rather than accounting for multiple bounces. 

3.8.2 IRMA 

The US Air Force’s Infrared Modeling and Analysis (IRMA) software package 

has the capability to generate imagery simulating sensors from the visible range, IR, 

millimeter wave radar, and SAR, and claims over 130 users [Savage et al. 2008].  The 

software is divided into a passive channel, a radar channel, and a LADAR channel, each 

viewing a common scene made of models constructed from triangular facets.  Material 
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IDs are associated with each facet to describe its electromagnetic properties, referencing 

additional reflectance, thermal properties, and texture files.   

Although significant effort seems to have been invested in the radar channel, 

interest in IRMA for this project is limited to the passive channel, which Savage et al. 

(2008) described as further divided into three separate programs:  ENVIRO, 

PASSIVE/PPASSIVE, and SSW.  ENVIRO is used to compute the heat signatures of 

objects and one-dimensional heat transfer between objects, calculating facet temperatures 

for use by the passive image generators.  PASSIVE models an unpolarized signature, 

while PPASSIVE models generalized elliptical polarization signatures, rendering images 

via Z-buffer accounting for emitted radiation, diffuse and specular reflections from the 

sun, the sky, and the earth, atmospheric path radiance, path transmittance, sensor spectral 

effects, and sensor spatial effects.  SSW handles sensor effects modeling such as system 

responsivity and digitization.  Surface reflectance is modeled with diffuse and specular 

components, and the passive channel includes multiple bounce effects. 

In one example, IRMA was used to model a polarimetric IR imaging system in a 

small target detection scenario [Sadjadi and Chun 2004].  The scene of interest consisted 

of four aircraft hangars connected by runways, with a target vehicle (either a T-72 tank or 

M-35 truck) parked on the grass nearby.  Several simplifying assumptions were made in 

the modeling process.  First, all surfaces were set to the same temperature, 24° C.  

Second, only two surface materials existed:  grass, which emitted unpolarized light, and 

glossy paint, which emitted polarized light as described by the Fresnel equations.  

Finally, no sun was present in the scene.  Figure 3 shows the synthetic scene as observed 

by the three Stokes vectors S0, S1 and S2 as described in Sec. 3.6.    
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Figure 3.  Synthetic polarimetric imaging scene generated by Sadjadi and Chun (2004) using the 

IRMA software package.  The scene is displayed as an intensity value for the S0 (top), S1 (middle), 

and S2 (bottom) Stokes vectors. 

Given these constraints, Sadjadi and Chun demonstrated the ability to separate the target 

from the background using statistical methods in a simple scene at GSDs with as few as 

four pixels on target.  However, IRMA’s polarimetric fidelity currently seems hindered 

by significant simplifying assumptions, so it will be avoided for this dissertation.  

3.8.3 CameoSim 

The CameoSim software package is currently maintained by Lockheed Martin’s 

UK division.  Ranging from the ultraviolet to the infrared, CameoSim is based on first 

principles physics and radiometric interactions, while using ray tracing techniques to 

generate a radiance map as well as temperature images for synthetic scenes.  In general, a 

CameoSim scene is constructed of 3-D geometric models, which are generally composed 

of facets [Mitchell et al. 2007].  Each facet then has a material associated with it, and 
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each material is described in a database containing a bidirectional reflectance distribution 

function (BRDF) along with optical and thermophysical properties.  A sensor system is 

defined, along with known weather parameters and a time of day.  An atmospheric 

database incorporates direct solar or lunar fluxes, sky shine fluxes, path radiance and 

transmission, and the local thermal environment.  The synthetic image is rendered by 

incorporating the cumulative effects of the sensor and atmosphere in observing the scene.  

Some work has been done to validate CameoSim’s hyperspectral modeling 

capability and to determine the fidelity of reflection modeling.  Although the synthetic 

hyperspectral data compared reasonably well to real data, areas for improvement were 

identified [Briottet et al. 2006].  Specifically, difficulties arose in capturing the correct 

tree density and effects of the 3-D nature of grass in the modeled scene.  Problems were 

also noted with facets that failed to accurately represent reflections, or glints, from curved 

areas like rotor blades in the 3-5 μm band [Mitchell et al. 2007].  One approach to solving 

the problem was to simply use the law of reflection with an enormous number of small 

facets, but a severe increase in computational load resulted.  In contrast, a method known 

as vertex averaging was demonstrated to be more accurate with far fewer facets. 

More recently, Harvey et al. (2008) used CameoSim to analyze a laser imaging 

application and their synthetic scenes are shown in Figure 4 below.  In their urban 

scenario, the sensor flew toward and then over the target, such that the degree of 

obscuration remained constant regardless of range or look-down angle.  In the scene with 

the target under foliage, rendering individual leaves took a significant amount of 

computing time, limiting the number of target types that could be used in a given 

scenario.   
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Figure 4.  Synthetic CameoSim scenes used by Harvey et al. (2008) for a laser imaging application. 

Although CameoSim seems to be reasonably rigorous, the common intense 

computational requirements make CameoSim an unattractive option for simulating a 

complicated urban environment under the vast number of illumination conditions for a 

serious trade study. 

3.8.4 IRHSS 

Kwan et al. (2008) described the Infrared Hyperspectral Scene Simulation 

(IRHSS) software suite sponsored by the US Air Force Research Laboratory and the 

Army Armament Research, Development and Engineering Center.  In addition to models 

for atmospheric propagation and sensor processing, the software integrates the Multi-

service Electro-optical Signature (MUSES) model to compute scene temperatures and 

hyperspectral radiances for the thermal IR bands (3-14 μm).  As with the other modeling 

packages, material surface properties are linked to facets in 3-D geometry models.  The 

software is relatively new and results lack widespread publication in remote sensing 

literature.  IRHSS’s limitation to IR spectral data severely constrains its potential use in a 

data fusion experiment. 
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3.8.5 DIRSIG 

The Digital Imaging and Remote Sensing Laboratory at Rochester Institute of 

Technology developed the DIRSIG software package as a first-principles based ray 

tracing model to create sample data to test image system designs, evaluate target 

detection algorithms and train image analysts.  Rays are cast out from each pixel on the 

focal plane to determine what that pixel sees, and what the sources of radiance are for the 

area observed.  Each pixel is subsampled, with the spectral results combined via a linear 

mixing model [Ientilucci and Brown 2003].  The model is capable of producing 

hyperspectral imagery from the visible through the thermal infrared (0.4-20 μm), and can 

correctly model interactions for different polarizations of incoming light.  The 

MODTRAN model is incorporated into DIRSIG to accurately account for atmospheric 

effects.   

DIRSIG has been used to model both high resolution spectral and spatial data.  

Since DIRSIG is a ray tracing model, geometric detail is essential to accurately describe 

radiometric mechanisms.  Striking a balance between the modeled field-of-view and the 

required computation time means the amount of detail required is inversely proportional 

to the expected GSD.  A wide area synthetic scene dubbed Megascene 1 was constructed 

in DIRSIG to mimic an area on the northeast side of Rochester, NY for use in 

hyperspectral image analysis [Ientilucci and Brown 2003].   The area of interest has a 

combination of urban and suburban residential, industrial and forested areas, so detailed 

models of ten geometrically unique house types, along with specific commercial and 

government buildings were created in the Rhinoceros CAD package [Rhinoceros 

software 2010].  In addition, six different species of trees were modeled with the Tree 
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Professional software package [Tree Professional software 2010], and three geometric 

variants of each species were created.  Figure 5 shows examples of the models produced 

by Ientilucci and Brown. 

  

Figure 5.  (Left) Example of a house generated with Rhinoceros.  (Right) Screen capture of the Tree 

Professional software package illustrating a rendered Norway maple.  Images courtesy of Ientilucci 

and Brown (2003). 

Once the houses and trees were designed, the models were replicated and altered through 

scale, rotation and translation for use throughout the scene.  Further, the materials 

attributed to each facet could be changed each time the model was reused in the scene.  

As a result, a set of 50 geometrically and spectrally unique houses was produced, 

complemented by a set of 20 geometrically and spectrally unique trees.  Additionally, 

primary terrain materials like asphalt and grass were characterized spectrally and placed 

in the scene to match the results of a GML classification performed on actual data of the 

site.  Finally, the spectral angle mapper (SAM) and spectral matched filter (SMF) 

algorithms were applied in a target detection scenario, and the trends of the ROC curves 

that resulted were consistent with results obtained from actual data. 

For applications based on a much narrower field-of-view, a high resolution 

synthetic scene dubbed MicroScene was constructed based on an existing data collection 
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effort [Barcomb et al. 2004].  High spatial (3‖ GSD) and spectral (0.01 μm) resolution 

imagery was captured using at the Rochester Institute of Technology using the Center for 

Imaging Science’s MISI and WASP sensors at an oblique viewing angle.  Three 

Humvees were placed in the scene under varying levels of concealment to serve as 

targets.  After the data was collected, a spatially and spectrally accurate synthetic replica 

of the scene was created in DIRSIG.  The synthetic imagery was validated against the 

images of MicroScene by analyzing both scenes with qualitative analysis, GML 

classification, and the RX target detection algorithm.  Figure 6 demonstrates one example 

of the qualitative analysis performed by Barcomb et al., where an actual image of a 

Humvee under camouflage netting was compared to the synthetic image of the same 

scene to highlight the phenomenology reproduced. 

 

Figure 6.  (Left) Actual image of a Humvee under camouflage netting.  (Right) Synthetic image of the 

same Humvee under camouflage netting, demonstrating accurate reproduction of a highly detailed 

model and shadowing phenomenology.  Images courtesy of Barcomb et al. (2004). 

Although the GML classification results showed some differences depending on whether 

DIRSIG or truth derived training sets were used, overall the objects in the image were 

classified appropriately with either training set.  Further, it was found that the results of 

the RX algorithm at the high resolution examined were dependent on the accurate 
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modeling of objects in the actual scene that were initially considered inconsequential, 

demonstrating a potential flaw in model scenes that use only a test object and a uniform 

background. 

Building on the successful modeling of spectral effects, polarization effects were 

first incorporated into DIRSIG by using BRDF models based on the Torrance-Sparrow 

and Beard-Maxwell models to provide polarized BRDF estimations [Meyers et al. 2002].  

By applying the effects of surface roughness and index of refraction to the different 

incident polarizations, the models reasonably matched measured BRDF data.  However, a 

lack of polarimetric BRDF databases poses the single largest problem for conducting 

fully polarimetric radiometry simulations, while physically based BRDF models do a 

reasonable job of predicting the polarimetric BRDF of simple surfaces.  Because 

materials with highly polarized properties, such as the man-made materials often sought 

in target detection algorithms, are often also highly specular, the full BRDF is required to 

correctly incorporate the directionally reflected background contributions [Gartley et al. 

2007].  DIRSIG generally treats the polarized BRDF as a polarized specular component 

and an unpolarized volume component, as shown in Eq. 13: 

dunpolarizepolarizedvolumespecularpBRDF fffff   (13) 

The generalized, polarized BRDF model used for Gartley’s study was the ―Shell Target‖ 

BRDF model [Shell 2005].  In this approach, the specular component was modeled using 

a generalized, polarized, Gaussian-distributed micro-facet approach, while the 

unpolarized component was modeled using a compound volume scattering and diffuse 

scattering term.  Polarimetric measurements were taken of geometrically complex 

vehicles open to the night sky, and a similar scene was rendered in DIRSIG to assess the 
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polarimetric modeling capabilities.  Figure 7 shows the actual imagery alongside the 

synthetic DIRSIG imagery generated by Gartley et al.  Qualitatively, the images agree 

quite well in each band.  However, some salt-and-pepper noise is apparent in the S0 

synthetic image of the SUV, a fault which the study’s authors traced to the chosen 

polarized BRDF model breaking down at grazing angles rather than an issue with 

DIRSIG’s ray tracing capabilities. 

 

Figure 7.  (Left)  Actual polarimetric images of vehicles under a cold, clear night sky.  (Right)  

Synthetic image generated by DIRSIG based on the actual scene.  Images courtesy of Gartley et al. 

(2007).   

Another effort to reproduce real-world polarimetric imagery in the reflective 

region with the DIRSIG model incorporated pBRDFs, polarized atmospheric models, and 

polarization-sensitive sensor models [Pogorzala et al. 2007].  Grass and asphalt were 

attributed based on the Shell BRDF model [Shell 2005], while an aluminum fire hydrant 

was attributed with a material based on a Priest-Germer pBRDF [Priest and Germer 

2002].  The remaining objects were attributed with unpolarized spectral emissivity 

curves, since the authors noted the limited number of pBRDF models available for the 
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construction of their scene.  The lack of available polarized optical properties was 

compensated for by a technique called bump mapping, designed to introduce pixel-to-

pixel variability within material classes.  In bump mapping, the surface normal of an 

object is deflected a specific amount based on the corresponding pixel’s value in the 

bump map.  In essence, the bump map serves to introduce small-scale variability while 

constraining the number of facets required for a given scenario.  A qualitative comparison 

between the real and synthetic imagery showed that the bump mapping technique was 

able to recreate asphalt texture observed in real images.  Further, the synthetic imagery 

produced a low DOP from natural materials and a high DOP from man-made materials, 

confirming phenomenology observed in actual data.  However, the largest deficiencies in 

the synthetic data were associated with the lack of available pBRDF models for all 

materials in the scene. 

As a key ingredient for scenes involving vegetation, Gartley and Basener (2009) 

verified the correct simulation of leaf pBRDF properties in DIRSIG.  A synthetic forest 

attributed with leaves having pBRDFs but unpolarized trunks and branches was created, 

and the degree of linear polarization from the generated forest imagery was validated 

against publicly available POLDER measurements. 

In summary, DIRSIG is a proven first principles based synthetic image generation 

model.  The proven ability to simulate hyperspectral effects in the visible and IR regions, 

combined with an emerging capability to model polarimetric effects, makes DIRSIG an 

attractive choice for use in a multimodal sensor trade study.  Further, the existence of a 

rigorously modeled, realistically attributed synthetic urban scene makes DIRSIG a 

natural choice for modeling an urban target detection scenario.  Once the synthetic 
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imagery has been generated, the modeled atmospheric effects must be compensated to 

some degree for spectral target detection algorithms. 

3.9 Atmospheric Compensation 

As part of the analysis required for an accurate trade, it is assumed that an analyst 

would have performed some form of atmospheric compensation on the imagery.   

However, rather than identifying the optimum atmospheric compensation technique, this 

study only requires a reasonable, consistent process be applied to each image.  The users 

could then select and optimize a particular atmospheric correction technique when the 

parameters in their trade study have been customized based on the actual resources 

available.  Since this study is concerned with many images in the solar reflective region 

of the spectrum, three primary techniques for atmospheric compensation exist.  Schott 

(2007) showed that the radiance reaching the sensor through a bandpass in the reflective 

region can be approximated as shown in Eq. 14 
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where '

sE  is the exoatmospheric irradiance, σ is the solar zenith angle, τ1 is the 

transmission from the sun to the target, F is a shape factor describing what fraction of the 

hemisphere of the sky above the target is open, Eds is the downwelled irradiance, Ebs is 

the reflected background irradiance onto the target, and Lus is the upwelled radiance 

reaching the sensor. 

The empirical line method (ELM) is a common ground truth reflectance 

correction method [Schott 2007].  For clear skies at small zenith angles, Eq. 14 can be 
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simplified by assuming 
1

'' cosss EE .  Further, for pixels in a relatively open space, 

1F .  The main goal of ELM is to regress observed radiance values against known 

reflectance values in each band as shown in Eqs. 15 and 16 
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where 
22
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ds LEm  is the slope of the regression, and 
uLb is the intercept.  In 

ideal cases, carefully calibrated control panels are placed in the scene as a reference, but 

the users could also obtain reflectivity measurements of several Lambertian objects in the 

scene.   

 For situations without some form of ground truth, Piech and Walker (1974) 

described a method to take advantage of the difference in radiance levels observed at 

shadow edges.  The radiance in a given spectral band observed just outside a shadow, Ls, 

depends on the shape factor, F, as shown in Eq. 17, while the radiance observed just 

inside the shadow, Lsh, cast on the same diffuse material is given by Eq. 18 [Schott 2007]: 
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Combining Eqs. 17 and 18 by substitution of rd and rearranging yields Eqs. 19a and 19b, 
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If Lu is assumed constant, and objects of similar shape are selected, then F is also 

approximately constant.  Therefore, m and b are approximately constant, and can be 

solved for by a linear regression of the shadow radiance versus the sun radiance, 

producing Lu as shown in Eq. 20 [Schott 2007]: 

m

b
Lu

1
     (20) 

Piech et al. (1978) then explained how the upwelled radiance could be combined with a 

statistical estimate of the mean observed radiance, for a class of objects whose mean 

reflectance is well known, to produce the total radiance incident on the sensor.  They 

typically used concrete, with the resulting equation form shown in Eq. 21 [Schott 2007]: 

    
davg

uavg

ds
r

LL
LEm ][ 22

1    (21) 

Where Lavg is the mean radiance observed for many samples of the standard material 

chosen and rdavg is the mean reflectance based on known measurements.  Once the slope 

term is known, the reflectivity of each pixel in the scene can be estimated. 

Several atmospheric correction methods based on radiative transfer models exist 

[Schott 2007].  In a typical case, as many known parameters from the data collect as 

possible are entered into MODTRAN, where the transmittance, upwelled radiance, 

downwelled radiance and solar radiance are calculated and combined to produce the total 

radiance reaching the sensor for a nominal reflectivity target.  From that information, in 

conjunction with the observed radiance, an estimate of the reflectivity of every pixel in 

the scene can be calculated. 
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In closing, the shadow method, ELM and MODTRAN-based methods are all 

recognized atmospheric compensation techniques. ELM is the most attractive choice for a 

trade study because perfectly calibrated reference panels can be placed in every version 

of the synthetic scene.  Another advantage is that even with multiple view angles and 

multiple times of day, ELM can be easily automated.  After converting the synthetic data 

into reflectance space, a widely accepted target detection algorithm can be applied. 

3.10 Detection Algorithms 

Since the focus of this work is on fusing the products from two sensors at the 

decision level to enhance target detection, the data from each sensor will be processed 

independently with some detection algorithm.  Although many different target detection 

algorithms exist [Schott 2007], to avoid turning the project into a target detection 

algorithm optimization effort, representative standard algorithms will be used. 

The spectral matched filter (SMF) is the most common target detection algorithm 

based on a stochastic description of the data, and is described by Eq. 22 [Schott 2007] 

)()()( 1
mxSmtx

TSMF    (22) 

where t is the target vector and x is the sample vector.  Further, m and S are the 

background mean vector and covariance matrix, which are created from local values 

drawn from an area around the pixel of interest or global values drawn from the entire 

scene.  Each pixel in the image is analyzed, and if the SMF score is above some user 

defined threshold, η, the pixel is designated a target.  The threshold is used to control the 

false alarm rate, and so can be varied based on the particular application.  Farrand and 

Harsanyi (1997) modified the SMF algorithm such that the output is scaled to a target 
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abundance value between zero and one, dubbing their method constrained energy 

minimization (CEM) as shown in Eq. 23: 
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The CEM technique is therefore an attractive algorithm for a multispectral or 

hyperspectral target detection problem.   

The topological anomaly detection (TAD) algorithm has achieved a reasonable 

degree of success when applied to a hyperspectral target detection application [Basener 

and Messinger 2009].  The TAD algorithm models the background as a set of connected 

components of a graph, imposing a topological assumption on the data without requiring 

any assumptions on the geometry, linearity, or statistical distribution of the data.  First, 

the TAD algorithm normalizes the image data so that the brightest 10% of the pixels in 

the image have Euclidean L2 norm equal to two, and the darkest 1% have Euclidean L2 

norm equal to one.  Next, a random subsample from the image of between 500 and 

10,000 pixels is chosen to model the background, and the distance between every pair of 

pixels in the sample is computed.  A graph is then constructed by adding an edge between 

the closest 10% of pairs of points, exploiting the idea that anomalous pixels are unlikely 

to have nearby neighbors.  The largest groups of points are then designated as 

background as shown in Figure 8.   
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Figure 8.  The TAD algorithm operating on data notionally distributed in two dimensions.  The 

closest pairs of points are deemed background and linked by dotted lines, with different colors 

implying different classes.  Pixels linked to their nearest neighbor by longer solid lines are likely 

anomalous.  Image courtesy of Basener and Messinger (2009). 

The percentage of pixels from the subsample that are background is then assumed 

to equal the percentage of the image that is background.  Finally, each pixel is measured 

against the identified background pixels via the codensity metric, δk, which represents the 

radius of the smallest sphere enclosing k neighbors.  The TAD ranking of each pixel in 

the image is equal to the sum of the distances to the 3
rd

, 4
th
, and 5

th
 nearest neighbors in 

the background pixels, as shown by Eq. 24: 
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The TAD rankings result in level sets of arbitrary topology, allowing detection of pixels 

in the holes of the convex hull of the background as shown in Figure 9 [Basener and 

Messinger 2009]. 

Clustered 
background
pixels

Isolated anomalous
pixels
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Figure 9.  The TAD algorithm produces level sets of arbitrary topology (solid lines), allowing 

detection of anomalous members (circled) both inside and outside of the background’s convex hull.  

Image courtesy of Basener and Messinger (2009). 

Similar to the CEM score, the TAD ranking can be normalized to fall in the range 

between zero and one.  In their experiment, the TAD algorithm outperformed several 

standard spectral anomaly detection algorithms. 

The TAD algorithm has also been employed for a DIRSIG polarimetric target 

detection application [Gartley and Basener 2009].  The specific scenario consisted of 

manmade targets in a natural background, observed by a multispectral polarimetric 

sensor.  Four polarization images (S0, S1, S2 and S3) were captured at blue, green, red and 

near IR wavelengths, but the TAD algorithm performed best when the intensity, or S0 

band, was ignored.  Further, the TAD algorithm outperformed the standard RX anomaly 

detector on panchromatic polarimetric imagery. 
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3.11 Section Summary 

In conclusion, this section has summarized the current state of the art by 

describing the capabilities of existing high spatial or spectral resolution sensor systems, 

explaining the different data fusion levels and reviewing established decision level fusion 

techniques.  A high level overview of existing sensing modalities and polarimetric remote 

sensing was conducted, identifying ongoing interest in hyperspectral and polarimetric 

sensors for target detection applications.  Several previously published multimodal sensor 

fusion efforts were described, confirming that the impact of fusing hyperspectral and 

polarimetric data under a variety of conditions is still largely unexplored.  The 

capabilities of several synthetic image generation models were examined for possible use 

in a potential trade study, and DIRSIG was identified as a useful tool.  Next, the ELM 

was found to be a representative atmospheric compensation method that could easily be 

implemented for synthetic imagery under a wide variety of viewing geometries and 

illumination conditions.  Finally, the CEM and TAD algorithms were identified as proven 

target detection algorithms.  In a decision level multimodal fusion experiment, CEM 

could be used to analyze the data spectrally, while TAD could be used to identify 

materials with a strong polarimetric signature.  With the general concepts firmly 

established, the specific experimental method must be determined. 
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4 Methodology 

4.1 Section Overview 

Several key tasks made up the multimodal sensor trade study proposed in Sec. 1.   

First, a reasonable scenario and notional sensor systems were defined.  Then, a model 

urban scene was designed to evaluate the scenario and sensors of interest.  The scene was 

rendered under a variety of viewing geometries, illumination conditions and SNR values 

before applying an atmospheric compensation technique.  After introducing some degree 

of registration error between the images from the two sensors, the sensor outputs were 

fused for analysis at both the pixel and the decision levels.  A method to determine the 

impact of incorporating data from a second modality was described by analyzing the 

resulting ROC curves, and a process to determine the ideal viewing conditions for each 

sensing modality was proposed.  Finally, a procedure describing how the best-case 

images from each modality were geometrically registered and analyzed helped determine 

the maximum attainable benefit from incorporating the second modality. 

4.2 Defining the Scenario 

Given the intelligence community’s emphasis on high value target and tracking 

discussed in Sec. 1 and the existing remote sensing systems described in Sec. 3.2, an 

unmanned sensor platform scanning an urban area for a particular vehicle described a 

reasonable scenario.  A representative urban area contained a mix of residential houses, 

commercial facilities, government buildings, trees, roads, and vehicles.  In this scene, the 

target vehicles were mixed with several other types of vehicles to provide realistic 

background clutter, assessing the sensor’s ability to differentiate between vehicle types 
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rather than simply detecting any vehicle.  After establishing the scene of interest, 

reasonable sensor parameters were defined. 

4.3 Defining the Sensor 

The goal of this project was to assess the utility of a particular sensor rather than 

to investigate the engineering challenges inherent in building that sensor.  No optical 

aberrations were considered, such that the output represented a detector limited best-case 

scenario.  For this project, a hyperspectral or multispectral sensor was used in 

conjunction with a polarimetric sensor, and the notional test sensors were assembled by 

merging optimum capabilities from published existing systems.  As outlined in Sec. 3.2, 

the Predator’s published operational ceiling of 7620 m provided a notional observational 

altitude; while the Global Hawk’s published GSD (from a much higher vantage point) 

suggested a minimum GSD of 0.5 m is reasonable.   

To achieve the desired GSD in the simulation, both sensors shared a common 

optic with a focal length of 300 mm.  However, the hyperspectral sensor had significantly 

larger detector pixels than the polarimetric or multispectral sensors to account for SNR 

issues.  The capabilities of each sensor were simulated in DIRSIG by an ideal 2-D 

framing array, where each pixel was capable of recording information as seen through 

multiple user-defined spectral bands or linear polarizers arranged at different orientations.  

Therefore, the resulting synthetic data appeared as an image of the scene as seen through 

each of the filtered bands defined by the user.  It was assumed that an actual detector, 

sampling and interpolation scheme could be constructed to produce data equivalent to the 

capabilities described below.   
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    NASA’s AVIRIS instrument proves that an airborne hyperspectral system 

spanning the 0.4-2.2 μm region is achievable and served as the template for this scenario.  

The hyperspectral sensor’s focal plane was simulated as a framing array of 128 × 128 

pixels, where each pixel was 120 μm× 120 μm.  Positioning the sensor at the Predator’s 

flying altitude of 7500 m above ground level produced a nadir GSD of 3 m, with the 

intent to hunt sub-pixel vehicle targets while permitting a reasonable pixel fill factor.  

The hyperspectral sensor consisted of 90 channels spanning the same spectral range as 

AVIRIS, each with a Gaussian spectral response of FWHM 20 nm.   

The spectral characteristics for the multispectral sensor in this project were based 

on Worldview-2’s eight bands, with rectangular spectral responses of varying widths.  

Table 3 shows the spectral sensitivity regions of the multispectral bands. 

Table 3.  Spectral bands for the multispectral sensor used in this project.  The spectral bandwidths 

roughly match Worldview-2. 

Band Name Spectral Bandpass (nm) 

Coastal 400 – 450 

Blue 450 – 530 

Green 520 – 610 

Yellow 585 – 625 

Red 640 – 690 

Red Edge 705 – 745 

NIR 770 – 880 

NIR 2 860 - 1040 
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GeoEye-1’s proven space-based multispectral capability has a nadir GSD of 1.65 m.  If 

the GeoEye-1 multispectral instrument were mounted on a lower airborne platform, the 

change in scale would improve the GSD.  Reducing the number of spectral bands, as 

compared to the hyperspectral instrument, allows a plausible decrease in GSD to 0.5 m.  

To generate this data, the multispectral focal plane was designed as a framing array of 

768 × 768 pixels where each pixel was 20 × 20 μm. 

Four of GeoEye-1’s multispectral bands could easily be re-imagined as the four 

bands needed for polarimetric imaging.  The polarimetric sensor was mounted on the 

same platform as the spectral sensor, and had a 768 × 768 pixel focal plane where each 

pixel was 20 × 20 μm.  The resulting nadir GSD of 0.5 m ensured multiple pixels on 

target, capturing localized polarimetric phenomena rather than losing information by 

integrating over a large region.  Four separate polarimetric bands were defined, each 

filtered with a linear polarizer oriented at 0°, 45°, 90° or -45° such that the sensor 

reaching radiance could be decomposed into a Stokes vector at each pixel with the 

modified Pickering method [Schott 2009].  The panchromatic spectral response function 

was a rectangle spanning 400 – 900 nm. 

 The combination of hyperspectral and polarimetric sensors identified in this 

section represented cutting-edge, but reasonably achievable, sensor capabilities.  Since 

the goal of this project was to determine the value added by incorporating polarimetric 

information into spectral data analysis, plausible baseline systems were identified.  This 

project did not address whether these were the ideal combinations of sensor hardware or 

tasking altitudes—rather, a future potential user could apply this method to evaluate the 

effect obtained with the exact systems available.  Similarly, the system effectiveness was 
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assessed against a notional urban scene, with a future user free to exactly model a 

particular target of interest. 

4.4 Designing a Model Scene 

DIRSIG was the natural choice for use in this project, since RIT has access to the 

model and extensive work has been done with DIRSIG to simulate an urban environment.  

A subset of Megascene 1, dubbed Tile 1, provided an excellent background for a target 

detection application.  Tile 1 was composed of a mostly residential area, a significant 

school complex, several trees, open fields and parking lots.  Figure 10 shows both a 

DIRSIG rendering and a Google Earth snapshot of the region of interest, permitting 

vehicles in open fields, on roads, in parking lots, near houses, under trees and near large 

buildings while constraining the amount of data generated. 

 
Figure 10. (Left) DIRSIG rendering of Megascene 1, Tile 1.  (Right) Google Earth snapshot of the 

region of Rochester, NY nominally represented by Megascene 1, Tile 1.  

 The modeled target and decoy vehicles in the synthetic scene were facetized 

geometric constructions based on actual vehicles.  Because polarimetric effects are highly 

sensitive to surface orientations, great effort was expended to accurately model small 
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features on the vehicle like the side view mirror, radiator grille and door handles.  Figure 

11 shows one of the CAD vehicle models designed for use with DIRSIG, provided by the 

Air Force Office of Scientific Research (AFOSR). 

 

Figure 11.  Subaru wagon model provided by AFOSR for use in DIRSIG.  Notice the level of detail—

a side mirror, front grille and even door handles have been incorporated. 

Once the models had been converted into a format that DIRSIG could read, each facet 

was attributed with a material, which then linked to an emissivity curve, measured at 1 

nm spectral resolution, and a pBRDF also provided by AFOSR.  The target vehicles are 

red Subaru wagons, while the decoy vehicles are blue Ford Focus sedans, white sedans, 

black BMW SUVs, green VW wagons, yellow pickup trucks, and grey Volvo wagons.  A 

total of 18 target vehicles and 108 decoy vehicles were inserted into the scene.  While the 

facetized non-target vehicles provided polarimetric clutter, several different red materials 

provided spectral clutter for the target detection application.  For example, measured 

spectra of red asphalt, roof shingles, bricks and a tennis court surface were attributed 

where those objects appear in the scene. 
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 To remain plausible, the radiance reaching the sensor was affected by local 

weather conditions.  Weather effects in the scene were modeled with MODTRAN-4P, 

with realistic weather inputs based on Megascene 1’s location in Rochester, NY.  Actual 

weather data from June 23, 1992 was input into MODTRAN-4P, along with the standard 

mid-latitude summer tape5 file adjusted to account for urban aerosols.  In conjunction 

with MODTRAN-4P, DIRSIG predicted the sensor reaching radiance, but did not apply 

any sensor MTF effects.  In essence, this implied that the sensor was detector limited, and 

represented the best-case scenario.   

The synthetic scene was generated by sampling the scene a t  the instantaneous 

field of view (IFOV) in each direction, across every spectral band, leading to a GSD of 

0.25 m at nadir and 2×2 spatial oversampling in general.  Then, 2×2 pixel neighborhoods 

in each band were summed, such that the resulting DIRSIG scene captured the sensor-

reaching radiance in each polarimetric or spectral band for each pixel on the high 

resolution focal plane described in Sec. 4.3.  Since each of the high spatial resolution 

pixels represented  the IFOV of the larger GSD hyperspectral image, one hyperspectral 

super pixel was created by summing the radiance values calculated from a 6 pixel × 6 

pixel area of the high spatial resolution image.  Because the spectral and polarimetric 

information was rendered for a wide variety of viewing conditions, constructing the low 

spatial resolution spectral image from existing data eliminated the need to re-render each 

DIRSIG scene at the larger hyperspectral GSD. 
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4.5 Varying Relevant Parameters 

For this trade study, the fundamental free parameters were solar zenith angle, 

sensor zenith angle, sensor relative azimuth angle, and sensor SNR.  Figure 12 describes 

how the angles of interest could be varied while the sensor GSD values were fixed. 

 

Figure 12.  The solar zenith, sensor zenith and sensor relative azimuth angles were all varied for this 

trade study while the hyperspectral (blue rectangle), multispectral (red rectangle) and polarimetric 

(green rectangle) sensor GSD values were fixed. 

Varying the illumination angle and sensor viewing angles affected the ability to measure 

spectral and polarimetric phenomena, while varying the sensor SNR helped establish 

sensor design requirements.  The rendered scene GSD was locked to 0.5 m for nadir 

viewing, as described in Sec. 4.3, and was not a part of the investigated trade space.  

Since the scene represented an actual part of Rochester, NY, the illumination angle was 

varied by examining several different times of day:  0600, 0700, 0800, 1000 and 1200.  

MS (or HS)  & PI

Sensor 
Zenith

Solar 
Zenith

Sun

MS nadir GSD = 0.5 m

PI nadir GSD = 0.5 m

Sensor Relative 
Azimuth

HS nadir GSD = 3 m
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For each time, the position of the sun was set accordingly to produce five separate 

illumination conditions.  As long as some of the targets and decoys are shadowed while 

some are well lit, at each time, the morning and afternoon sun positions are redundant if 

the images are acquired as described below.  

The sensor zenith angle was varied in a uniform fashion while holding the altitude 

constant.  As a result, the slant range to the center of the scene changed for every zenith 

angle.  However, maintaining a constant altitude is more representative of a loitering 

UAV than holding the slant range constant and varying the sensor altitude.  Since 

Megascene 1 is located about 119 m above sea level, and the operational ceiling of the 

Predator is 7620 m, the altitude of the sensor above ground was conveniently fixed at 

7500 m.  The sensor zenith angle was investigated by modeling seven concentric circular 

flight paths of varying radii, plus a nadir image, with the sensor focused on the center of 

the scene in Figure 10.  The concentric flight paths represented zenith angles from ±10° 

to ±70° in 10° increments, spanning a range more extreme than that used by most 

existing systems.   

The required sensor relative azimuth angles were determined by incorporating the 

principles discussed in Sec. 3.6.  A conceptual line was drawn from the sun, through the 

center of the scene and on through the concentric circular flight paths described above.  

Then, the sensor azimuth angle was varied as shown in Figure 13 by sampling angles 

±20° from the principal plane formed by the sun, the point designated as the center of the 

scene, and the ray representing the specular reflection.   
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Figure 13.  For each time of day, the sensor azimuth angles of interest were ±20° from the line 

representing the specular reflection coming from the center of the scene.  The red arcs represent 

circular flight paths with varying sensor zenith angles. 

The azimuthal angles were sampled in 5° increments, producing nine distinct images for 

each zenith angle.  An additional control image was captured at a relative azimuth angle 

90° from the sun, for a total of ten distinct azimuthal images per zenith angle.  Finally, 

the azimuthal images for each of the seven zenith angles were captured at each time of 

day.  Including one nadir image for each time of day required that a total of 355 DIRSIG 

images be rendered for analysis. 

Varying the SNR of either sensor should affect the system performance.  To 

explore the fusion best case scenarios, the polarimetric sensor will be fixed at SNR = 200 

for all cases.  The AVIRIS and Hyperion systems described in Sec. 3.2 provide an 

estimate of reasonable SNRs for hyperspectral systems, ranging from just under 40 to 

almost 200.  Therefore, the spectral sensor SNR will be cycled through a series of values:  

50, 60, 80, 100 and 200.   
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The sensor SNR was varied during post-processing by adding scaled zero-mean 

Gaussian noise to each band in a noise-free DIRSIG image, as shown in Eqs. 25 and 26, 

thereby eliminating the need to render more synthetic images in DIRSIG. 

SNR

SignalAvg
N      (25) 

)(ImageImage Noise randnNijij
   (26) 

In Eq. 25, SignalAvg represents the average radiance value across all pixels captured by a 

particular spectral band and σN represents the standard deviation of the noise in that same 

band.  The pixel value in the ith row, jth column of the noise image was generated by 

appropriately scaling a random number drawn from the zero-mean standard normal 

distribution and adding the noise value to the radiance observed by the pixel in the ith 

row, jth column of the noise-free DIRSIG image. 

 In summary, five times of day were considered, ranging from 0600 – 1200.  Also, 

seven sensor flight paths were modeled for each time of day, with ten images acquired 

during each one, sampling angles ±20° away from the specular reflection with one image 

acquired at a 90° azimuthal angle from the sun.  In addition, one nadir image was 

rendered for each time of day.  With the current computational resources available in the 

Digital Imaging and Remote Sensing Laboratory, each of the 355 DIRSIG images was 

rendered in about twelve hours, and fifteen instances of DIRSIG can reasonably be 

executed in parallel.  As a result, the entire image set took roughly two weeks of constant 

computation to create.  Finally, five SNR values for each sensor were considered at every 

image acquisition point.  However, in addition to variations in performance induced by 
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illumination angle, sensor orientation and sensor SNR values, the multimodal sensor 

fusion process will also be impacted by registration errors. 

4.6 Simulating Registration Errors 

In any realistic multimodal system, the images captured by each different sensor 

modality will not be exactly aligned.  Although a variety of techniques exist to 

geometrically register images obtained from different perspectives, the images generally 

will not align perfectly due to parallax effects [Schott 2007].  The high spatial resolution 

hyperspectral, multispectral and polarimetric synthetic images generated by DIRSIG for 

each sensor modality were exactly aligned since common platforms were assumed, so 

some amount of registration error was induced by shifting the polarimetric image right 

and down as shown in Figure 14 below. 

 

Figure 14.  Registration error introduced between high spatial resolution polarimetric pixels, labeled 

P1 – P36, and low spatial resolution hyperspectral super pixel labeled H1.   

Shifting the polarimetric image as shown in Figure 14 ensured that the 

polarimetric image was offset by the same distance on the ground from both the 

multispectral and hyperspectral images, but the pixel offset was different because of the 
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larger hyperspectral GSD.  In the multispectral case, the registration error was a shift of 

one pixel in x and y, while in the hyperspectral case the polarimetric information was 

offset by 1/6 of a hyperspectral super pixel.  The small amount of intentionally 

introduced registration error was meant to simulate any residual error that might be 

encountered after a registration routine was applied to actual data.  The intent of this 

project was not to investigate optimal registration techniques—rather, the goal was to 

acknowledge that registration errors can occur and may decrease the effectiveness of data 

fusion to some degree. 

4.7 Compensating Atmospheric Effects 

This project sought to apply a nominal atmospheric compensation technique to 

the spectral images rather than determine the optimum atmospheric compensation 

technique.  ELM was the most attractive atmospheric compensation technique described 

in Sec. 3.9, because it was easily automated and required minimal computational effort.  

Since part of this trade study involved varying the sensor view angle and the time of day, 

the atmospheric effects varied from one image to the next.  Therefore, whatever 

atmospheric compensation technique was chosen must be executed hundreds of times, 

producing slightly different effects for each set of conditions, and ELM was particularly 

suited to this task. 

To implement ELM with synthetic DIRSIG data, three 12 m × 12 m calibration 

panels of 0%, 50% and 100% reflectance were inserted into the image.  The large size of 

the panels, relative to the nadir multispectral GSD, ensured the calibration panels span 

about 50 full pixels at a sensor declination angle of 65°.  However, at the larger 
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hyperspectral GSD, the calibration panels may not span a full pixel at oblique angles.  

Since the goal of this step was to reasonably compensate the data for atmospheric effects, 

ELM was performed on the high spatial resolution spectral image before degrading it to 

the hyperspectral GSD.  The calibration panels were designed to be perfectly Lambertian, 

with a constant reflectance across the spectral range of interest.  Two of the panels were 

mounted on the flat roof of a large building in the center of the scene, while the third was 

placed in an open field.  Each location had a shape factor 1F , satisfying the assumption 

made for ELM in Sec. 3.9.  Spatially dispersing the panels ensured at least two panels 

were likely to be captured in each image, regardless of sensor view angle.   

When each image was analyzed in post-processing, the pixels containing 

calibration panels were identified via DIRSIG’s truth data.  The known reflectance values 

and corresponding sensor reaching radiances for each of those pixels were then plotted, 

and a best-fit line identified the slope and intercept as described in Sec. 3.9.  Finally, the 

effective Lambertian reflectance of every other pixel in the image was determined using 

the slope, intercept, and sensor reaching radiance.  Once the image had been converted to 

the reflectance domain, it was analyzed with spectral target detection algorithms.  

4.8 Fusing Sensor Outputs 

Two methods were explored to fuse the data in this project.  First, in the case of 

co-located multimodal sensors, the data were fused at the pixel level using elements 

drawn from the pan-sharpening technique discussed in Sec. 3.3 [Price 1986] and the 

combination logic for hyperspectral and DOLP data described in Sec. 3.7 [Cavanaugh et 

al. 2006].  Then a different algorithm, based on the LOP and LOGP algorithms described 
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in Sec. 3.4, was applied to fuse the sensor data at the decision level for both the co-

located and dispersed cases. 

4.8.1 Pixel Level Fusion 

The data from the co-located sensors was fused at the pixel level by treating the 

DOP described in Sec. 3.6 as an additional spectral band.  Specifically, the DOP values 

from a given image were treated as an additional band of spectral reflectance data as 

shown in Figure 15.   

 

 

Figure 15.  In the pixel fusion algorithm, DOP (black) will be conceptually stacked onto existing 

spectral bands (shown as RGB above) to create the fused data set. 

Normalizing the DOP values by the peak value ensured that all the data from the pixel 

fusion case was constrained between zero and one.  As a result, the Spectral Polarimetric 

Optimization Tool (SPOT) pixel fusion algorithm was essentially the CEM algorithm 

from Sec. 3.10 operating on a customized target vector as shown in Eq. 27: 

        (27) 
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where x was the vector of polarimetric and reflectance values representing the target 

signature. 

In the multispectral case, the spectral GSD exactly matched the polarimetric GSD, 

so the data were simply combined via stacking.  In this case, x was the vector of 

polarimetric and effective Lambertian reflectance values for each spectral band as shown 

in Eq. 28:  

          (28) 

If the images were acquired under favorable polarimetric sensing conditions, man-made 

objects were expected to be among the most polarizing objects in the scene.  Therefore, 

the value sought in the DOP band with the CEM algorithm were set to one—identifying 

objects with the highest degree of polarization as those most likely to be targets.  The 

target reflectance values were merged with the desired DOP value to produce the target 

signature t as shown in Eq. 29: 

          (29) 

However, in the hyperspectral case, an additional issue had to be considered.  The 

hyperspectral 3.0 m nadir GSD didn’t match the polarimetric 0.5 m nadir GSD.  

Therefore, the hyperspectral super pixel will be spatially resampled by dividing it into 36 

sub-pixels to match the polarimetric GSD, as shown previously in Figure 14.  Although 
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each sub-pixel will have the same spectral reflectivity values, the sub-pixels will align 

with different DOP values to produce the pixel value as shown in Eq. 28. 

4.8.2 Decision Level Fusion 

Alternatively, since the two sensing modalities tested in this project measure 

different physical phenomena, their outputs were also combined via a decision level 

fusion technique as previously described in Sec. 3.4.  As a result, data from each sensor 

was analyzed independently and then merged to enhance the probability of detection at a 

fixed probability of a false alarm.  The spectral data was analyzed with the CEM 

algorithm described in Sec. 3.10, producing a score for each pixel between zero and one.   

Conversely, each pixel of polarimetric data was evaluated using the TAD 

algorithm from Sec. 3.10, also producing a score between zero and one.  The TAD 

algorithm essentially differentiated polarimetrically anomalous pixels from the urban 

background, rather than attempting to match pixels to a known polarimetric signature.  

TAD was attractive because of the relatively few targets in the scene and the difference in 

polarimetric signature between man-made vehicles and the background.  After a TAD 

score was calculated for each pixel, the TAD output was mapped onto the spectral data.  

As Figure 14 shows, one hyperspectral pixel with GSD = 3 m represents a 6 × 6 pixel 

region of polarimetric data with GSD = 0.5 m.  Therefore, each hyperspectral super pixel 

was divided into 36 pixels, all with the same CEM score, but with different TAD scores 

as described above.  Since the multispectral GSD was identical to the TAD GSD, the 

multispectral CEM score for each pixel was combined with the corresponding TAD 

score.  The registration error described in Sec. 4.6 meant pixels on the image boundary 

may not have both a TAD and CEM score.  Since the TAD data was being mapped onto 
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the spectral data, any TAD scores shifted off the image to the right or down were ignored.  

The spectral pixels along the top and left edges of the images were assigned the TAD 

score of their nearest neighbor.   

Since the focus of this project was to reduce the number of false alarms for a 

given spectral sensor, the outputs of the analysis above were exploited via a variation of 

the LOGP discussed in Sec. 3.4.  Pixels were thresholded according to their overall 

spectral polarimetric integration (SPI) score, shown in Eq. 30: 

)]()()][([)( xxxx TADCEMCEMSPI    (30) 

where SPI scores above some user-defined threshold were declared targets.  The first 

term in the SPI algorithm simply represented the likelihood of a given pixel being a target 

from the multispectral or hyperspectral sensor’s point of view.  The right-most term in 

brackets from Eq. 32 represented a way to incorporate information from the polarimetric 

sensor while preventing the polarimetric sensor from vetoing targets nominated by the 

spectral sensor.   

If a target is defined as a pixel containing part of a vehicle with a particular type 

of paint, the spectral sensor is completely capable of identifying targets using the CEM 

algorithm under ideal illumination and viewing conditions, unlike the polarimetric sensor 

using TAD.  Under poor polarimetric sensing conditions, little signal reaches the sensor 

and polarimetric anomalies are unlikely to be found—in which case the SPI algorithm 

essentially produces a squared CEM score, rather than vetoing all pixels.  Alternatively, 

when polarimetric sensing conditions are ideal, the spectral sensor identifies pixels as 

potential targets, and then the polarimetric sensor modifies that ranking to place extra 

emphasis on anomalous pixels.  The impact of incorporating additional polarimetric 
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information varies across a variety of viewing conditions, and ROC curves were used to 

quantify the effect. 

4.9 Quantifying the Impact 

For both pixel and decision level fusion, enhanced performance with the SPOT or 

SPI algorithm was defined as a higher probability of detection than that obtained with the 

CEM algorithm at a fixed probability of false alarm.  Since a larger area under the ROC 

curve represented an enhanced probability of detection, the measure of merit was the 

percent increase in area under the ROC curve when comparing the SPOT or SPI 

algorithm to the CEM algorithm, for a specific viewing geometry, time of day, and SNR.  

However, the ROC curve behavior at extremely high false alarm rates was irrelevant for 

any practical application, so the integration was limited to the point where the false alarm 

rate met some user-defined threshold.  Any viewing conditions where no targets were 

detected at that point were deemed not useful, noted and discarded from further analysis. 

Fusing the data as described in Sec. 4.8 meant that one false alarm represented a 

PFalseAlarm of 1.7×10
-6

, ensuring enough distinction to accurately capture behavior of the 

target detection algorithms being analyzed.  The first step in constructing the ROC curves 

was to determine the number of targets actually visible in the scene.  DIRSIG truth data 

was used to determine the dominant material present in each high-spatial resolution 

image pixel.  Recalling from Sec. 4.4 that each pixel in the synthetic image will be 

generated via 2×2 oversampling, a pixel at least 50% filled with target material was 

flagged as a target in the DIRSIG truth data.  
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Once the number of targets (expressed as target pixels) present for a particular 

viewing geometry was determined, the pixels were separately scored by the SPOT, SPI 

and CEM algorithms.  For both the multispectral and hyperspectral case, scoring occurred 

at the smaller multispectral / polarimetric GSD.  The SPOT and SPI algorithms produced 

a score map at the desired GSD, but the hyperspectral CEM score map needed to be 

resampled to the same number of pixels as the SPOT and SPI scores.  The scored pixels 

were then classified as either targets or background.  By thresholding and reducing the 

threshold until the desired number of targets was found, the number of false alarms 

generated was determined.  The values required for a ROC curve were calculated as 

shown in Eqs. 31 and 32: 

T

TF

N

N
DR      (31) 

image

TF

N

NN
FAR     (32) 

where DR, the detection rate, was the rate of correctly identifying a target, NTF was the 

number of target pixels found, NT was the total number of target pixels in the image, 

FAR, the false alarm rate, was the rate of labeling a background pixel as a target pixel, N 

was the number of pixels flagged as potential targets, and Nimage was the total number of 

pixels in the image.  With this method, a target completely obscured by buildings for a 

particular viewing geometry did not show up as a missed target, since no information 

about that target ever reached the focal plane.  As a result, NT may have changed from 

image to image, which should not have posed a problem given the large number of target 

pixels as described in Sec. 4.4.   
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The area under the SPOT, SPI and CEM ROC curves was calculated by 

numerically integrating, via the trapezoidal method, the curve’s DR values from the 

minimum FAR value to the FAR threshold described above.  In the case that no measured 

DR value existed for the FAR threshold value, an estimated DR value was calculated by 

assuming the ROC curve was piece-wise linear and interpolating between the nearest 

neighbor data points as shown in Figure 16. 

 

Figure 16.  When the area under a ROC curve was integrated to a user-defined threshold (vertical 

black dashed line), an interpolated detection rate (red circle) was determined by assuming the ROC 

curve is piecewise linear (red dashed line) between the two nearest measured values (blue x). 

The governing measure of merit for assessing the performance of the fusion 

algorithms was a ratio, R, of the test algorithm performance to the multispectral or 

hyperspectral CEM algorithm performance when applied to the nadir image for the same 

time of day as shown in Eq. 33:   
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The test area metric, AT, was the area under the ROC curve generated for each algorithm 

and viewing geometry under evaluation.  The nadir area metric, AN, was the area under 

the ROC curve generated by applying the CEM algorithm to the nadir image for the same 

time of day as AT.  The ratio R therefore assessed the off-nadir multispectral (or 

hyperspectral) CEM, SPOT and SPI performance in terms of the nadir multispectral (or 

hyperspectral) CEM performance. 

Since the random noise added to the image as described in Sec. 4.5 changed the 

appearance of pixels in the image, the target-like rankings of each pixel produced by the 

various algorithms varied for different patterns of random noise.  As a result, the area 

under the ROC curves varied from one application of noise to another for the same 

image.  The image therefore had to be analyzed several times to ensure accurate 

algorithm improvement metrics were reported.  After each iteration, the standard 

deviation of the area metrics was calculated and compared to the standard deviation from 

the previous iteration.  On the nth iteration, once the standard deviation for all area 

metrics changed less than 3%, each of the percent improvement metrics was defined as 

the median of the collection of the n individual values.  The median value was used to 

account for possible values of infinite percentage increases resulting from zero area under 

a given ROC curve. 

If any of the target detection algorithms failed to find a target before the FAR 

threshold value was reached, the area under that particular ROC curve equaled zero and 

that algorithm was declared not useful for the given viewing geometry.  However, a 
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situation could arise where one algorithm was not useful, but another might have had 

some area under the ROC curve.  The difference in performance was meaningful, but a 

zero value in the denominator produced an infinite difference in Eq. 33.  Therefore, an 

infinite improvement meant that incorporating polarimetric information via a test 

algorithm made the algorithm useful, whereas the original nadir CEM baseline scenario 

was not.  The metrics described above were then used to identify the ideal viewing 

conditions for each sensing modality. 

4.10 Independently Optimizing CEM & TAD Geometry 

Next, this project assumed that a polarimetric sensor on one platform could be 

tasked in conjunction with a spectral sensor on another platform to simultaneously 

acquire imagery of the target scene from different angles as shown in Figure 17. 

 

Figure 17.  The ideal multispectral (MS), hyperspectral (HS) and polarimetric (PI) sensing 

geometries were established for each time of day. 

The ideal viewing geometries for each sensing modality were determined for each of the 

five times of day rendered in Sec. 4.5.  For the spectral sensor, the optimum viewing 
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geometry for each time was associated with the point where the area under the CEM 

ROC curve calculated in Sec. 4.9 was the greatest.  This metric was chosen because the 

CEM algorithm is only dependent on spectral data.  In contrast, the optimum viewing 

geometry for the polarimetric sensor was determined by treating TAD as a target 

detection algorithm and integrating the area under the ROC curve as described in Sec. 

4.9.  This metric represented the point where target pixels are most likely to be flagged as 

anomalies with the TAD algorithm, highlighting where the extra polarimetric information 

had the most impact on target detection. 

4.11 Registering the Images 

Once the ideal viewing geometries for each modality at a given time of day had 

been identified, the corresponding DIRSIG images rendered in Sec. 4.5 and 

atmospherically compensated in Sec. 4.7 needed to be registered.  Although there were 

only five sets of images, the potential existed for significant amounts of scale, translation 

and rotation between the images.  In addition, at large oblique sensor zenith angles, 

different elements of the scene had different slant ranges to the sensor, introducing 

shearing effects.   

Given these challenges and a relatively few number of images to register, the 

images were registered by manually selecting ground control points (GCPs) in ENVI and 

applying the automated Delaunay triangulation warping technique.  As the default option 

in ENVI, this method fit triangles to the irregularly spaced GCPs and interpolated values 

to the output grid.  To best preserve data in the re-sampled image, the new radiance 

values for every pixel were obtained from the nearest neighbor for each band of spectral 
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or polarimetric information.  Finally, the total root-mean-square (RMS) error from the 

GCPs was recorded to quantify the registration quality. 

4.12 Establishing the Maximum Attainable Benefit 

The spectral information in the newly registered images was atmospherically 

compensated using the method from Sec. 4.7 prior to applying the CEM algorithm.  No 

atmospheric compensation was applied to the polarimetric data before applying the TAD 

algorithm.  At small zenith angles where the GSD was roughly constant across the focal 

plane because of the sensor’s narrow field of view (±1.5°), the polarimetric effects of 

upwelled radiance appeared as a constant bias.  At more oblique angles, the upwelled 

radiance polarization effects were still smoothly varying across a neighborhood of pixels.  

In both cases, since TAD sought to identify anomalous pixels, small local variations due 

to target material and geometry had more impact than larger scale atmospheric variations. 

The areas under the ROC curve for the CEM, SPI and SPOT algorithms were 

calculated as in Sec. 4.9, and the ratios from Eq. 33 for off-nadir CEM, SPI and SPOT 

algorithms were compared to assess the impact on target detection.  Once ratios had been 

determined for each time of day, the best multimodal spectral and polarimetric sensing 

conditions were identified.  Quantifying the benefit obtained from incorporating 

polarimetric information under a given set of illumination conditions will help sensor 

operators determine the opportunity cost of tasking the polarimetric sensor with a 

separate mission.  Additionally, analysts can incorporate the tolerance for false alarms in 

a given target detection scenario and determine whether incorporating the additional 

polarimetric sensor is worthwhile.  Finally, understanding the maximum attainable 
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benefit under a variety of illumination conditions will aid in designing requirements for 

future multimodal sensing systems. 

4.13 Section Summary 

This section described the essential tasks comprising the multimodal sensor trade 

study proposed in Sec. 1.   First, a reasonable scenario and notional sensor systems were 

defined, and then a model urban scene was identified.  A capability was established to 

render the scene under a variety of viewing geometries, illumination conditions and SNR 

values before applying the ELM atmospheric compensation technique.  Registration 

artifacts were accounted for by shifting the polarimetric image one pixel right and down 

from the high resolution spectral image.  Methods were described to fuse the sensor 

outputs for analysis via the SPOT algorithm at the pixel level and the SPI algorithm at the 

decision level before a performance comparison to the CEM target detection algorithm.  

A method to quantify any value added by incorporating polarimetric data with spectral 

data was described, comparing the areas under the resulting ROC curves.  Further, a 

method to determine the ideal viewing conditions for each sensing modality was 

identified so that the best-case images from each modality could be geometrically 

registered.  Finally, a process to calculate the maximum attainable benefit from 

incorporating the second modality via the SPI or SPOT algorithm was described.  
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5 Preliminary Studies 

5.1 Section Overview 

Several preliminary experiments were carried out to ensure the validity of the 

results of this research project.  First, the effects of using a global versus local 

background mean vector and covariance matrix in the CEM algorithm were investigated, 

and the global values were shown to provide suitable performance while minimizing 

computational requirements.  Next, the spectral and polarimetric sensing modalities were 

shown to be decorrelated to some extent, ensuring the second sensing modality was 

providing additional useful information.  Then, the spectral signal to clutter ratio (SCR) 

of the synthetic scene was compared to the spectral SCR value from an actual image, 

verifying sufficient variation was present in the synthetic background.  In addition, the 

most polarimetrically anomalous materials in the synthetic scene were identified to 

qualitatively understand the polarimetric clutter in the scene.  A study was also conducted 

to identify a reasonable ROC curve FAR threshold given the range of SNR values 

examined in this study.  Next, the effect of employing the SPI algorithm using the RX 

anomaly detection algorithm instead of the TAD algorithm was assessed.  Then, an 

experiment was conducted to determine whether improvements seen with the fusion 

algorithms were due to value added by polarimetric information or simply the addition of 

high-resolution contrast information in the S0 band.  Finally, an experiment was 

conducted to ensure that the quality of the synthetic polarimetric data was sensitive to 

different viewing geometries.  
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5.2 Background and Covariance Matrices 

In Sec. 3.10, the CEM algorithm requires a background mean vector, m, and a 

covariance matrix, S, as inputs to assign a score to the pixel of interest.  For some 

applications, using local values instead of global values has been shown to enhance target 

detection performance, but the results come with an increased computational burden 

[Caefer et al. 2008].   

To ensure the covariance matrix is invertible for use in the CEM algorithm, the 

number of pixels contributing to the covariance matrix must be greater than the number 

of bands in the image—ideally several times greater [Caefer et al. 2008].  The 

hyperspectral system described in Sec. 4.3 has 90 spectral bands, requiring that any local 

window around the pixel of interest would measure at least 10 pixels × 10 pixels.  

Constantly computing the covariance of this sliding window will significantly increase 

the already considerable computational resources required for this project.  Further, one 

of the primary concerns with synthetic imagery is rendering spectrally complex 

backgrounds [Ientilucci and Brown 2003].  The background is more likely to appear 

spectrally complex as more pixels are included in the covariance matrix calculation, 

simply because more materials are likely to be represented.  Using a global covariance 

matrix for this project is attractive because it minimizes computation requirements, 

maximizes the likelihood that the covariance matrix is invertible, and maximizes the 

spectral variation in the background. 

The mean vector, m, is an estimate of the background spectral characteristics.  

Essentially, the CEM algorithm is scoring each pixel of interest based upon both how 

similar the pixel is to a known target spectrum and how different the pixel is from the 
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background.  When a local background vector is used, pixels are averaged from within a 

sliding window around the pixel of interest, and the pixel of interest is masked out to 

avoid contaminating the background estimate in case a target is present.  Using a 3×3 

window around the pixel of interest has been shown to increase performance, while any 

attempt to include pixels farther away degraded performance [Caefer et al. 2008].  

Although Caefer’s team was focused solely on subpixel targets, the targets in this project 

may be subpixel size for highly oblique sensor zenith angles but will span multiple pixels 

at viewing angles near nadir.  Therefore, the target material in the pixel of interest may 

also exist in nearby pixels, contaminating the estimate of the background drawn from a 

local sliding window. 

A study was performed to examine the CEM algorithm performance using three 

different methods to estimate the background mean vector.  First, the global mean value 

was extracted by considering all the pixels in the image in question.  Next, pixels within a 

3×3 sliding window around the pixel of interest were considered, while the pixel of 

interest was masked out.  Finally, pixels within a 5×5 sliding window around the test 

pixel were considered, while all pixels within a 3×3 sliding window around the test pixel 

were masked out.  Two viewing geometries, both at 0800 (solar zenith angle of 55°), 

were considered.  First, the sensor was positioned viewing at nadir, while the second case 

was an off-nadir scenario with the sensor at a zenith angle of 50° and an azimuth of 175° 

from the sun—a location predicted to be favorable for polarimetric remote sensing.    

First, the nadir viewing geometry was examined.  Figure 18 shows the CEM ROC 

curves for both the multispectral and hyperspectral cases constructed with a global 
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covariance matrix and a background mean vector derived from the varying sized 

windows described above.   

 

Figure 18.  The larger GSD hyperspectral (black) and smaller GSD multispectral (red) CEM ROC 

curves were created by analyzing the nadir scenario at 0800 with a global covariance matrix.  The 

background mean vector was constructed using the entire scene (solid lines), a 3x3 sliding window 

with the pixel of interest masked out (dashed lines) or a 5x5 sliding window with the pixel of interest 

masked out.   

Slight differences were observed in the multispectral case.  With the 3×3 window, the 

multispectral performance was degraded as compared to the global mean case or the 5x5 

window.  The degradation likely occurred because the targets spanned multiple pixels 

when viewed at nadir, meaning the estimate of the background was contaminated by the 

target’s spectral signature.  In contrast, the hyperspectral performance was less sensitive 

due to the larger GSD, and the ROC curves essentially overlapped.   

 The other viewing geometry examined was a sensor zenith angle of 50° and a 

sensor azimuth angle from the sun of 175°.  Figure 19 shows the CEM ROC curves for 



 

84 

both the multispectral and hyperspectral cases constructed with a global covariance 

matrix and a background mean vector derived from the varying sized windows described 

above. 

 

Figure 19.  The larger GSD hyperspectral (black) and smaller GSD multispectral (red) CEM ROC 

curves were created by analyzing the off-nadir scenario at 0800 with a global covariance matrix.  The 

background mean vector was constructed using the entire scene (solid lines), a 3x3 sliding window 

with the pixel of interest masked out (dashed lines) or a 5x5 sliding window with the pixel of interest 

masked out. 

The off-nadir CEM ROC curve trends mirrored the trends observed at nadir, with the 

multispectral performance again degraded when using the 3×3 window as compared to 

the global mean or the 5x5 window.   Although the GSD was increased due to the off-

nadir viewing geometry, the multispectral GSD was still small enough that the target 

spectral signature spanned several pixels and contaminated the estimate of the 

background.  In the hyperspectral case, the ROC curves were quite similar due to the 

significantly larger GSD.   
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Figure 20 shows the off-nadir SPI ROC curves for both the multispectral and 

hyperspectral cases using a global covariance matrix and a background mean vector 

derived from the varying sized windows described above.  Again, more variation was 

observed in the smaller GSD multispectral case than in the larger GSD hyperspectral 

case—and this was expected, since the SPI algorithm leveraged the results of the CEM 

algorithm. 

 

Figure 20.  The larger GSD hyperspectral (black) and smaller GSD multispectral (red) SPI ROC 

curves were created by analyzing the nadir scenario at 0800 with a global covariance matrix.  The 

background mean vector was constructed using the entire scene (solid lines), a 3x3 sliding window 

with the pixel of interest masked out (dashed lines) or a 5x5 sliding window with the pixel of interest 

masked out. 

Figure 21 shows the off-nadir SPOT ROC curves for both the multispectral and 

hyperspectral cases using a global covariance matrix and a background mean vector 

derived from the varying sized windows described above.  In stark contrast to the CEM 

or SPI algorithms, the SPOT pixel fusion performance proved quite sensitive to the way 
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the background mean vector was constructed, and using a global mean value far 

outperformed analyzing a limited sliding window.  The dramatic difference in 

performance between the CEM and SPOT algorithms suggested that windowing the 

polarimetric information negatively impacted performance.  When a sliding window was 

implemented, the variation in polarimetric information used to calculate the mean vector 

was dramatically reduced—implying that a wide-area perspective was required to 

accurately represent the polarimetric clutter of the urban scene. 

 

Figure 21.  The larger GSD hyperspectral (black) and smaller GSD multispectral (red) ROC curves 

were created by analyzing a sensor zenith angle of 50° and a sensor azimuth angle of 175° at 0800 

with a global covariance matrix and local background mean vector drawn from a 5×5 neighborhood 

with a 3×3 neighborhood around the pixel of interest masked out.  The solid lines were obtained 

using the CEM algorithm from Sec. 3.10, while the dotted lines were obtained using the SPI 

algorithm from Sec. 4.8. 

Although slight differences were observed in the CEM and SPI algorithm ROC 

curves when comparing results derived from the global and local mean estimates, the 
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local mean estimates did not shift the ROC curves to an order of magnitude lower false 

alarm rate.  Further, windowing the polarimetric data for the SPOT algorithm 

dramatically hampered performance.  In addition, the need to calculate a sliding window 

and different mean value for each test pixel increased the computational burden 

significantly.  The global mean value was therefore adopted for use on the rest of this 

project because it provided roughly equivalent target detection rates for CEM and SPI, 

maximized the SPOT performance, and minimized the computational effort. 

5.3 Sensing Modality Correlation 

For the sensing modality correlation study, the spectral and polarimetric images 

were perfectly aligned to avoid any artifacts introduced by registration error.  Given the 

covariance, Cxy, of two metrics x and y, a correlation coefficient rxy can be calculated as 

shown in Eq. 34 below [Papoulis and Pillai 2002].        

 

The multispectral CEM and TAD scores for each pixel were then be compared for a 

particular viewing geometry, and a correlation coefficient calculated, to determine how 

well the multispectral CEM score was able to predict the TAD score for each pixel.  

Further, the chosen viewing geometry was in a favorable location for polarimetric 

sensing as described in Sec. 3.6 to provide a wide variety of polarimetric signatures in the 

scene.  Figure 22 shows a plot of the multispectral CEM score versus the TAD score for 

each pixel in the image acquired at 0800, with a sensor zenith angle of 40°, a sensor 

azimuth angle of 175° from the sun and an SNR value of 200—a case predicted to be 

favorable for polarimetric sensing. 
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Figure 22.  For an image acquired at 0800, with a sensor zenith angle of 40° and a sensor azimuth 

angle of 175° from the sun, the TAD score for each pixel is plotted as a function of the pixel’s 

multispectral CEM score.  Very little correlation exists, since r = 0.1023.  

Although Figure 22 shows that a wide variety of CEM and TAD scores were assigned, 

the correlation coefficient for the set of the two scores is only 0.1023 , meaning 

the two score metrics are statistically significantly uncorrelated.   

Another way to assess the correlation between CEM and TAD scores is by 

nominating pixels with a high score as targets with both algorithms, and assessing the 

results with a ROC curve.  As described in Sec. 3.10, CEM is a target detection 

algorithm, while TAD is an anomaly detection algorithm.  Figure 23 shows the resulting 

ROC curves, confirming that CEM outperforms TAD when applied in the fashion 

described above.   
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Figure 23.  For an image acquired at 0800, with a sensor zenith angle of 40° and a sensor azimuth 

angle of 175° from the sun, ROC curves generated with either the multispectral CEM or TAD scores 

for each pixel are plotted, confirming very little correlation exists between the two metrics. 

Further, Figure 23 demonstrates that the pixels receiving the highest TAD scores are 

often not target pixels, confirming that CEM and TAD scores are reasonably 

uncorrelated. 

 The uncorrelated nature of the CEM and TAD scores could be a mixed blessing 

for the fusion algorithms proposed in Sec. 4.8.  Pixel level fusion techniques tend to rely 

on measurements of the same physical phenomenon, where some correlation is present 

between the two data sets being fused [Price 1986, Pohl and Van Genderen 1998].  Since 

the polarimetric and spectral measurements in this project measure different physical 

phenomenon, and are uncorrelated, the pixel level fusion SPOT algorithm performance 

may suffer.  However, decision level fusion effectiveness increases when the classifiers 

used are uncorrelated [Petrakos et al. 2001].  One of the CEM algorithm’s weaknesses is 
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that very bright pixels will trigger false alarms, because when the brightest pixels are 

projected onto the target vector, they will still produce a large value.  However, while 

target pixels are likely to be polarimetrically anomalous when compared to the 

background, a spectrally bright pixel with a very low TAD score most likely represents a 

bright false alarm.  Since the TAD score is used to modify the CEM score in the SPI 

algorithm, under favorable polarimetric sensing conditions the SPI algorithm will 

increase the score of target pixels relative to spectrally bright, yet polarimetrically 

unremarkable false alarms.  Therefore, the uncorrelated nature of the CEM and TAD 

algorithms should enhance the SPI algorithm’s performance. 

5.4 SCR Calculation 

The SCR is a metric used to assess how different the target signal is from the 

background in an image, as shown in Eq. 35 below [Schaum 2001]:                                                                 

 

where t represents the target signature vector, m represents the background mean vector, 

and S represents the image covariance matrix.  The SCR values for the synthetic images 

were computed for four different types of pixel vectors:  90 hyperspectral bands, eight 

multispectral bands, one DOP band and one TAD score band.  For the 0800 time point, 

the sensor azimuth angle was fixed at 175° from the sun but the sensor zenith angle was 

varied from 10° to 70° in 10° increments.   

Initially, all SCR values were calculated based on an SNR value of 200, with a 

synthetic image GSD of 0.5 m.  Figure 24 shows the calculated SCR values as a function 

of the sensor zenith angle.  The hyperspectral case (black) hovered around SCR = 28 
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while the multispectral case (red) decayed from SCR = 20 near nadir to SCR = 5 at the 

most oblique angle.  The difference between the two cases demonstrated how 

incorporating more spectral information through finer spectral resolution helps to identify 

target pixels.  Note that for the DOLP case (dashed blue line) the SCR remained below 

five for all cases—indicating that DOLP was not a useful metric to identify targets.  

However, in the TAD case (dotted blue line) the importance of viewing geometry in 

polarimetric sensing quickly became apparent.  Although the SCR started low, a dramatic 

increase was observed as the sensor zenith angle changed resulting in a peak SCR ≈ 20 at 

a zenith angle of 50°.  This was an excellent example of how the TAD algorithm 

effectively separates anomalous pixels from the background under ideal polarimetric 

sensing conditions.  

 

Figure 24.  Signal to clutter ratio (SCR) as a function of sensor zenith angle with the sensor azimuth 

angle fixed at 175° from the sun, the solar zenith angle fixed at 55°, sensor SNR = 200 and GSD = 0.5 

m.  The hyperspectral case (black) hovered just below SCR = 30, while the multispectral case (red) 

decayed from SCR = 20 near nadir to SCR = 5 at the most oblique angle.  Note that the DOLP case 

(dashed blue line) varied from about SCR = 2 to SCR = 5 near the sun’s specular reflection, while the 

TAD case (dotted blue line) peaked at an SCR near 20 at a zenith angle of 50°. 
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Next, the spectral SCR values from the synthetic imagery were compared to the 

spectral SCR values from an actual system to confirm that enough background variation 

was present in the synthetic scene.  Using the COMPASS system, RIT acquired 

hyperspectral imagery of the Rochester, NY area notionally represented by Megascene 1 

in this study [Raqueno et al. 2005].  Based on the COMPASS system specifications and 

the imagery collection parameters, the imagery was collected with a GSD ≈ 0.66 m 

across 256 spectral bands spanning 0.350 μm to 2.5 μm [Simi et al. 2001].  Figure 25 

shows an RGB image extracted from the COMPASS collect, where an isolated reddish 

vehicle can be seen in a parking lot.  Several pure vehicle paint pixels were identified, 

and a spectrum was extracted to serve as a target pixel.     

 

Figure 25.  RGB image of 256 band hyperspectral COMPASS image collected over the region of 

Rochester NY similar to that represented by Megascene 1. A zoomed view shows an isolated reddish 

vehicle (boxed) used to identify a target pixel in the image. (Right) RGB rendering of DIRSIG’s 

Megascene 1. Several red target vehicles can be observed along with six different models of decoy 

vehicles. 

 

COMPASS DIRSIG
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A spectral SCR = 50.17 was calculated for the COMPASS image by inserting the 

extracted target spectrum, scene mean value and scene covariance matrix into Eq. 35 

without applying any atmospheric compensation.   

However, the COMPASS image was acquired with 256 spectral bands, while the 

hyperspectral imager envisioned in this project only has 90 spectral bands—although 

both span a similar spectral region.  The COMPASS imagery was degraded to 85 bands 

(to permit a more direct comparison between systems) by summing the contributions 

from bands 1-3 into a new band 1, summing the contributions from bands 4-6 into a new 

band 2, and so on, then disregarding information in the last band.  The same SCR metric 

was calculated based on the 85 bands, resulting in SCR ≈ 45, which was quite similar to 

the 256 band case.  Since in both cases the SCR in the actual hyperspectral image is 

slightly higher than the SCR in any of the synthetic hyperspectral images examined, 

while the GSD of the synthetic image is smaller than that of the actual image, the 

background of the synthetic scenes was determined to have enough spectral variation to 

ensure the results of this study will be meaningful.   

However, an attempt to perform a similar SCR comparison between synthetic and 

actual polarimetric imagery was curtailed because no data has yet been reported on the 

scale of the proposed scene with the capabilities of the proposed instrument.  A 

qualitative examination of the synthetic polarimetric clutter was performed instead.  The 

scenario with a solar zenith angle of 55°, a sensor zenith angle of 50°, and a sensor 

azimuth angle of 175° from the sun represents a scenario with favorable polarimetric 

viewing conditions.  The polarimetric information for each pixel in the scene was scored 

with the TAD algorithm, and the materials associated with the top 0.5% anomalous pixels 
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(almost 3,300) were identified.  Figure 26 shows a histogram of TAD scores for the target 

and background pixels identified as the most anomalous, confirming that the target pixels 

are not the most anomalous materials in the scene. 

 

Figure 26.  With the solar zenith angle fixed at 55°, the sensor zenith angle at 50° and a relative 

sensor azimuth angle 175° from the sun, the TAD algorithm was used to identify the most anomalous 

0.5% of pixels in the urban scene.  The anomalous pixels were identified as either target or 

background material and plotted as a histogram.  The scale for number of pixels has been truncated 

to enable the target pixel histogram bars to be observed. 

Table 4 specifically identifies the materials flagged among the most anomalous pixels, 

demonstrating that many of the most polarimetrically anomalous materials are 

background material—roadways, grass and trees.  In addition to the vehicles in the scene, 

the TAD algorithm identifies several other man-made materials—roofing, siding and 

glass.  The variety of materials ranked as the most anomalous therefore gives a 

qualitative feel of the polarimetric clutter present in the scene. 
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Table 4.  With the solar zenith angle fixed at 55°, the sensor zenith angle at 50° and a relative sensor 

azimuth angle 175° from the sun, the TAD algorithm was used to identify the most anomalous 0.5% 

of pixels in the urban scene.  The materials associated with those pixels were then tallied to determine 

which materials were regarded as polarimetrically anomalous. The top 20 materials are shown 

below. 

Number 

of pixels 

Material Number 

of pixels 

Material 

560 Glass 70 Dark blue station wagon 

489 Grass (healthy green) 67 Siding (various types) 

437 Roadway surface (gray) 63 Black SUV 

243 Grass (brown / dirty) 60 Red station wagon (Target) 

189 Tree leaf (Silver Maple) 55 Tree leaf (Black Oak) 

153 Roofing (various types) 52 Green station wagon 

147 Tree leaf (Red Maple) 42 White pickup truck 

129 New asphalt (black) 36 Blue sedan 

114 Tree leaf (Norway Maple) 35 Swimming pool 

83 Aluminum 35 White sedan 

 

5.5 ROC Curve FAR Threshold 

As described in Sec. 4.9, the fusion algorithm effectiveness metric depends on the 

area underneath two ROC curves after the user has identified a FAR threshold.  Setting a 

particular FAR has the ability to influence the metric in two main ways.  First, if the FAR 

threshold is too high, the performance of the tail of the ROC curve drives the area metric 

and may skew the estimate of the algorithm’s effectiveness.  For all practical purposes, 

detections at an extremely high FAR are useless since it would take too long to weed out 

the targets from among the false alarms.  Second, if the FAR threshold is too low, the 

chosen algorithm may not find any targets—resulting in a zero value (in the case of the 

test algorithm) or an infinite value (in the case of the reference nadir scenario).  Either a 

zero or infinite value is of limited use when trying to establish gradations of performance 

increase.  Given these two concerns, the ideal FAR threshold lies in a space bounded on 
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both the upper and lower ends with some room for adjustment to ensure representative 

behavior was captured for both the test and reference scenarios. 

Since all test algorithms are evaluated by comparing to the CEM algorithm at 

nadir, the nadir viewing scenario was chosen to begin the ROC curve FAR threshold 

study.  Since the CEM algorithm performance was expected to decrease as the solar 

zenith angle increased, the 0600 and 0800 time points were analyzed to determine the 

lower bound on performance.  The area under the ROC curve for both the multispectral 

and hyperspectral CEM algorithms was calculated for four different SNR values (200, 

100, 50 and 15) with five different FAR thresholds (0.0003, 0.0007, 0.001, 0.0015 and 

0.002).  The lowest FAR threshold represented the condition where the number of false 

alarms (176) was almost equal to the total number of target pixels in the scene (166), 

while the highest FAR threshold represented more than 1,000 false alarms in the scene.   

A series of bar graphs was created to examine the area under the nadir ROC curve 

as a function of the chosen FAR threshold for a particular SNR value.  In the graph, the 

0600 case is shown in blue while the 0800 case is shown in red.  The multispectral bars 

are fully filled with color, while the hyperspectral bars are filled by a striped pattern.  

Figure 27 shows the SNR = 200 case, demonstrating that a FAR = 0.0003 barely captures 

any results from the hyperspectral sensor.  However, the relatively small error bars, 

which represent one standard deviation of the area under the ROC curve, indicate that the 

displayed value is a typical value after the random noise has been applied.  
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Figure 27.  The area under the CEM ROC curve (SNR = 200) is shown as a function of the user-

controlled FAR threshold for the multispectral (solid) and hyperspectral (striped) scenarios at both 

the 0600 (blue) and 0800 (red) times of day.  Note the error bars, indicating the displayed area under 

the ROC curve is representative of a typical value after random noise has been applied.  

Figure 28 shows the SNR = 100 case, demonstrating that a FAR = 0.0003 still barely 

captures any results from the hyperspectral sensor.  The error bars have increased in 

magnitude, but remain relatively small, still indicating that the displayed value is a 

typical value after the random noise has been applied.  
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Figure 28.  The area under the CEM ROC curve (SNR = 100) is shown as a function of the user-

controlled FAR threshold for the multispectral (solid) and hyperspectral (striped) scenarios at both 

the 0600 (blue) and 0800 (red) times of day.  Note the error bars, indicating the displayed area under 

the ROC curve is representative of a typical value after random noise has been applied. 

Figure 29 shows the SNR = 50 case, where the area under the multispectral ROC curve 

hovers near zero until FAR = 0.001, effectively imposing a lower bound on useful FAR 

thresholds for this data.  The error bars have again increased in magnitude, but remain 

relatively small, still indicating that the displayed value is a reasonable value after the 

random noise has been applied.  
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Figure 29.  The area under the CEM ROC curve (SNR = 500) is shown as a function of the user-

controlled FAR threshold for the multispectral (solid) and hyperspectral (striped) scenarios at both 

the 0600 (blue) and 0800 (red) times of day.  Note the error bars, indicating the displayed area under 

the ROC curve is representative of a typical value after random noise has been applied. 

Figure 30 shows the SNR = 15 case.  Since the area under the multispectral ROC curve 

hovers near zero for all FAR thresholds, any test algorithm that produced a measureable 

area under its ROC curve would result in an infinite improvement.  As a result, this SNR 

value is impractical and will be dropped from further analysis.  The error bars also 

indicate significant variation in the calculated area under the ROC curve value after the 

random noise has been applied, showing the potential for serious error in estimating the 

performance of test algorithms.  
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Figure 30.  The area under the CEM ROC curve (SNR = 15) is shown as a function of the user-

controlled FAR threshold for the multispectral (solid) and hyperspectral (striped) scenarios at both 

the 0600 (blue) and 0800 (red) times of day.  Note how the multispectral area hovers near zero for all 

FAR values, making a meaningful comparison to this data point impractical.  Further, the error bars 

indicate a high degree of variability in the area under the ROC curve after random noise has been 

applied. 

The results of the ROC curve FAR threshold study indicate that useful SNR values to 

investigate would be SNR = 200, 100 or 50 rather than SNR = 200, 50 or 15.  Further, a 

FAR = 0.001 is the minimum value that will permit a meaningful comparison between the 

test and nadir algorithms at all SNR values. 

 Once the FAR threshold for the project had been determined, representative 

multispectral (red) and hyperspectral (black) ROC curves were calculated for the CEM 

algorithm in the 0800 nadir scenario.  The figures below show the ROC curves for SNR 

values of 200, 100, 75, 60 and 50. 
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Figure 31.  ROC curves for multispectral (red) and hyperspectral (black) CEM algorithms when 

applied to the 0800 nadir case with an SNR = 200. 

 

Figure 32.  ROC curves for multispectral (red) and hyperspectral (black) CEM algorithms when 

applied to the 0800 nadir case with an SNR = 100. 
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Figure 33.  ROC curves for multispectral (red) and hyperspectral (black) CEM algorithms when 

applied to the 0800 nadir case with an SNR = 75. 

 

Figure 34.  ROC curves for multispectral (red) and hyperspectral (black) CEM algorithms when 

applied to the 0800 nadir case with an SNR = 60. 
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Figure 35.  ROC curves for multispectral (red) and hyperspectral (black) CEM algorithms when 

applied to the 0800 nadir case with an SNR = 50. 

The ROC curve graphs demonstrate that the hyperspectral performance decreases 

slightly, in a consistent manner, as the SNR decreases.  Alternatively, the multispectral 

performance decreases gradually from SNR = 200 to SNR = 75, but performance drops 

precipitously between SNR = 75 to SNR = 50.  The lowest SNR value examined in this 

project performed quite poorly at nadir, and therefore small increases in area under the 

ROC curve for test algorithms will produce large impacts on performance when the 

metric described in Sec. 4.9 is calculated. 

5.6 SPI Algorithm:  TAD vs. RX 

A short study was carried out to assess the impact of varying the SPI algorithm 

from Sec. 4.8.2 by replacing the TAD algorithm from Sec. 3.10 with the more widely 

known RX anomaly detection algorithm [Reed and Yu 1990].  The RX algorithm, shown 

in Eq. 36, has been successfully employed on spectral data [Schott 2009]:  
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where x is the spectrum of the pixel of interest, m is the scene spectral mean, and S is the 

scene covariance matrix.  For this study, the RX algorithm was applied to polarimetric 

information by operating on the Stokes vectors described in Sec. 3.6 rather than the 

spectral vectors for each pixel.   

The first step in determining a fair comparison between TAD and RX was to 

establish which Stokes bands to analyze with the TAD algorithm.  Previous work has 

suggested that TAD performs better as an anomaly detector when only the S1 and S2 

Stokes bands are considered, rather than when S0, S1 and S2 are all evaluated [Gartley 

2009].  To test this hypothesis, the scene designed for this work was examined with 

polarimetric and spectral SNR values of 200, while the solar zenith angle was fixed at 

34°, the sensor azimuth angle was fixed at 190° from the sun, and the sensor zenith angle 

was held at 30°.  Figure 36 confirms that although TAD with all three Stokes bands does 

add value in the SPI algorithm, even better performance was obtained by only using TAD 

on the S1 and S2 Stokes bands.   
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Figure 36.  Although using TAD on all three Stokes bands (S0, S1 and S2) adds value with the SPI 

algorithm,  even better performance is obtained using only two Stokes bands (S1 and S2). 

Figure 37 plots the two and three band TAD scores for each pixel in the scene, and 

provides some insight as to why the two band TAD score is more useful.  Since the S0 

band is contrast information, bright pixels are likely to be flagged as anomalous pixels—

just as they are with the CEM algorithm.  As a result, the SPI algorithm is more likely to 

assign a high score to a bright false alarm when relying on the three band TAD score.  

When the SPI scores are instead based off only the S1 and S2 Stokes bands, only 

polarimetric behavior contributes toward a pixel’s anomalous behavior. 
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Figure 37.  The TAD scores for each pixel are plotted as derived from either three Stokes bands (S0, 

S1 and S2) or only two Stokes bands (S1 and S2).  The two-band case produces better results when 

exploited by the SPI algorithm because including the S0 band flags bright false alarms (boxed) as 

polarimetrically anomalous pixels. 

The RX algorithm was compared to the TAD algorithm for the same viewing 

geometry described above.  After an RX score was determined for each pixel, the RX 

scores were normalized by the score of the most anomalous pixel in the scene to produce 

scores ranging from zero to one.  The normalized RX scores were then fed into the SPI 

algorithm to be combined with the scene CEM scores.  Figure 38 demonstrates that when 

a high-quality polarimetric signal is captured, the two algorithms produce different results 

when examined via the SPI algorithm.  Interestingly, the results derived from the RX 

algorithm were essentially unchanged whether two or three Stokes bands were used—

although the results derived from the TAD algorithm were superior to both RX cases.   
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Figure 38.  ROC curves were calculated for the hyperspectral SPI curves derived from applying 

TAD to the S1 and S2 bands (dotted black line), applying RX to the S1 and S2 bands (dotted red line), 

and applying RX to the S0, S1 and S2 bands (dashed red line).  The hyperspectral CEM curve (black 

solid line) is shown for the same viewing geometry, indicating the value added by incorporating 

polarimetric information.   

Next, the TAD and peak-normalized RX scores assigned to each pixel were 

examined to determine the correlation between outputs from the two algorithms.  The 

correlation coefficient between the two scores was 0.9159, and Figure 39 shows the 

strong functional relationship between the TAD and RX scores.  Although TAD and RX 

ranked anomalous pixels in a similar order, TAD weighted anomalous pixels with a 

higher numerical score.  The polarimetric information then carried more weight when the 

TAD scores (as opposed to RX scores) were fed into the SPI algorithm.  The increased 

relative value of the polarimetric information explains the significantly better 

performance in Figure 38 of the hyperspectral SPI ROC curve based on the TAD 

algorithm. 



 

108 

 

Figure 39.  The TAD and RX scores used in Figure 38 are shown for each pixel in the scene.  TAD 

and RX generally rank anomalous pixels similarly, but TAD seems to weight more anomalous pixels 

with a higher score than RX.   

 The strong functional relationship between TAD and RX scores displayed in 

Figure 39 raised the question of whether the TAD performance could be matched (or 

exceeded) by applying a nonlinear operator to the RX scores.  When the TAD and 

square-rooted RX scores were compared for each pixel in the scene, a much more linear 

relationship was produced.  Figure 40 shows a series of ROC curves, confirming that the 

TAD and the square-rooted RX scores produced similar performance when combined 

with the CEM scores via the SPI algorithm.  This result suggested an avenue exists to 

further optimize the distribution of the polarimetric anomaly scores during the fusion 

process, but that effort will be left for future work and not further developed in this 

project.  Because results have previously been published showing that the TAD algorithm 
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outperformed RX on polarimetric panchromatic imagery [Gartley and Basener 2009], and 

those results appear to be confirmed in this scenario, the remainder of this experiment 

will leverage the TAD score in the SPI algorithm. 

 

Figure 40.  For a given image, ROC curves were calculated using the hyperspectral CEM score (solid 

black line), the SPI algorithm fusing the CEM and TAD scores (dotted black line), the SPI algorithm 

fusing the CEM and RX scores (dashed black line) and the SPI algorithm fusing the CEM and 

square-rooted RX scores (dashed red line).  Re-mapping the RX scores by taking the square root of 

each pixel’s score appears to give performance similar to using the TAD score. 

5.7 Contrast vs. DOLP 

A study was conducted to verify whether improvements observed with the fusion 

algorithms were actually due to polarimetric information or simply due to additional 

high-resolution contrast information.  The viewing geometry chosen for analysis was a 

case where both of the fusion algorithms enhanced performance in the hyperspectral case.  

Specifically, the solar zenith angle was 34°, the sensor zenith angle was 30° and the 
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sensor azimuth angle was 170° from the sun.  The spectral SNR was fixed at 200, and an 

image created from the multispectral RGB bands captured under those conditions is 

shown in Figure 41.   

 

Figure 41.  An RGB image of the synthetic scene was observed with a solar zenith angle of 34°, a 

sensor zenith angle of 30° and a sensor azimuth angle of 170° from the sun. 

First, the RX anomaly detector was applied to several different combinations of Stokes 

band data sets to determine how they were related.  Then, the S0 band representing high-

resolution contrast information was used in place of DOLP in the SPOT pixel fusion 

algorithm.  Finally, the normalized RX scores derived from the S0 band were used in 

place of the TAD scores in the SPI decision fusion algorithm. 

5.7.1 RX Applied to Stokes Bands 

As an initial effort, the RX algorithm was applied to a series of different 

unnormalized Stokes band data sets (PI SNR = 200) to evaluate the impact of the contrast 
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information in the S0 band.  First, the RX algorithm was applied to just the S0 band where 

the contrast information was contained.  Next, the RX algorithm was applied to only the 

S1 and S2 bands.  Finally, the RX algorithm was applied to the entire Stokes data set (S0, 

S1 and S2). 

Figure 42 shows the S0 information that was analyzed to test the effect of high-

resolution contrast information.  As expected, the 100% reflective calibration panel on 

top of the building shows up brightest, the 50% reflective panel in the field has a mid-

level gray value and the 0% reflective panel is dark black.  

 

Figure 42.  The S0 information from the scene was used to test the effect of incorporating high 

resolution contrast information into the fusion algorithms. 

After RX was applied to the data sets described above, the RX scores for each 

pixel in the different cases were plotted against each other to determine whether any 

correlation was present.  Figure 43 demonstrates that although there was some correlation 
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(ρ = 0.6579), applying RX to all the Stokes bands instead of just the S0 band provided 

extra information about anomalous pixels in the scene. 

 

Figure 43.  Each pixel in the scene was evaluated both by applying RX to just the S0 band and then 

by applying RX to all the Stokes bands. 

Figure 44 shows that there was very little correlation (ρ = 0.1367) between the RX scores 

derived from the S0 band and the RX scores produced by analyzing the S1 and S2 bands.  

This discrepancy is due in part to Umov’s effect, where the DOP of brighter objects will 

tend to be less than the DOP of darker objects if the objects are of made of similar 

materials [Schott 2009]. 
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Figure 44.  Each pixel in the scene was evaluated both by applying RX to just the S0 band and then 

by applying RX to both the S1 and S2 bands. 

Applying RX to the different Stokes data sets indicated that polarimetric and contrast 

information provided separate perspectives in the attempts to separate anomalous pixels 

from the background. 

5.7.2 SPOT Algorithm 

For the SPOT algorithm described in Sec. 4.8.1, the scene’s polarimetric 

information was incorporated by treating the DOLP as an additional band of information.  

In this study, the DOLP band was replaced by the unnormalized S0 values to instead 

incorporate contrast information, while the target signature was unchanged from Sec. 

4.8.1—effectively assuming the target was the brightest object in the scene.  Figure 45 

shows the DOLP values of the scene as an intensity image.  Umov’s effect was 

highlighted by comparing the DOLP values between the 100% and 0% reflective 
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perfectly Lambertian calibration panels—the dark panel had some degree of polarization, 

while the bright panel showed almost none.  In contrast, bright points representing highly 

polarized pixels were apparent near the vehicles in the scene. 

 

Figure 45.  The polarimetric information from the scene was incorporated as DOLP values in an 

additional band for the SPOT algorithm. 

The SPOT algorithm was applied and a pixel fusion score was produced for each 

pixel in the image.  Figure 46 shows the results for the multispectral case derived from S0 

on the left and DOLP on the right.  In the case where the contrast information was used, 

variations in the pixel fusion scores were washed out.  However, in the case where the 

polarimetric information was used, the bright spots representing target vehicles were 

preserved.   
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Figure 46.  SPOT scores are shown for the multispectral case when using the S0 information (left) or 

DOLP (right). 

Figure 47 shows the results for the hyperspectral case derived from S0 on the left and 

DOLP on the right.  The differences between the two cases are less pronounced because 

the effect of varying the one band carrying polarimetric information was diluted by 

keeping the other 90 bands constant. 

  

Figure 47.  SPOT scores are shown for the hyperspectral case when using the S0 information (left) or 

DOLP (right). 

Finally, the SPOT fusion algorithm performance in both cases was evaluated via the ROC 

curves shown in Figure 48. 
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Figure 48.  The multispectral (red) and hyperspectral (black) SPOT ROC curves are shown when 

derived from the S0 information (dots) or DOLP (dashes).  The CEM scores (solid lines) are included 

for comparison. 

From the results presented in this section, it is apparent that the SPOT algorithm is not 

just evaluating high-resolution contrast information—rather, it is exploiting polarimetric 

information conveyed in the DOLP. 

5.7.3 SPI Algorithm 

For the SPI algorithm described in Sec. 4.8.2, the scene’s polarimetric 

information was incorporated by ranking anomalous pixels with the TAD algorithm, then 

combining those scores with each pixel’s CEM score.  In this study, the TAD scores 

(shown in Figure 49) were replaced by the RX scores derived from the S0 values (shown 

in Figure 50) to instead incorporate contrast information.   
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Figure 49.  The TAD scores calculated by examining the S0, S1 and S2 bands are shown as an intensity 

image.  Note how many vehicles show up as anomalous bright spots. 

 

Figure 50.  The RX scores derived from the S0 band are displayed as an intensity image.  Note that 

the vehicles are less visible in this image.  
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The SPI algorithm was applied to fuse scores from the anomaly detector with the spectral 

CEM scores, and the results were analyzed with the series of ROC curves shown in 

Figure 51. 

 

Figure 51.  The multispectral (red) and hyperspectral (black) SPI ROC curves are shown when 

incorporating RX scores derived from the S0 information (dots) or TAD scores derived from the S0, 

S1 and S2 bands (dashes).  The CEM scores (solid lines) are included for comparison. 

In summary, although incorporating high-resolution contrast information into the SPI 

algorithm did enhance performance in the higher GSD hyperspectral scenario, including 

polarimetric information in the other Stokes bands further increased performance. 

5.8 Establishing Sensitivity to Geometry 

The effectiveness of the fusion algorithms described above was expected to vary 

due to the sensitivity of polarimetric remote sensing to different sun-target-sensor 

geometries, as described in Sec. 3.6, so a small proof-of-concept experiment was carried 
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out to ensure this variation occurred when viewing the synthetic scene.  The 

hyperspectral and polarimetric sensors described in Sec. 4.3 were employed at three 

different viewing geometries, shown in Table 5, and ROC curves were calculated using 

the CEM, SPI and SPOT algorithms for each off-nadir viewing geometry.  

Table 5.  Three different viewing geometries were considered to illustrate the variable utility of 

polarimetric information. 

Image number 
Solar zenith 

angle (deg) 

Sensor zenith 

angle (deg) 

Relative azimuth 

angle (deg) 

1 55 50 180 

2 55 50 90 

3 55 10 180 

 

Figure 52 shows RGB images of the sensor reaching radiance calculated by DIRSIG for 

the viewing geometries in Table 5.  

 

Figure 52.  RGB images of sensor-reaching radiance calculated by DIRSIG for the cases described in 

Table 5. (Left) Image 1, captured near the sun’s specular reflection with a sensor zenith angle of 50° 

and relative azimuth angle of 180°. (Center) Image 2 is at the same zenith angle as Image 1, but only 

90° relative azimuth from the sun. (Right) Image 3 is azimuthally in the specular reflection (180°), 

but at a sensor zenith angle of only 10°. 

A ratio of the area under the off-nadir fusion ROC curve to the area under the off-

nadir spectral CEM ROC curve was calculated, and impact of polarimetric information 

on performance was quantified as a percent increase as shown in Table 6. 
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Table 6.  The area under the ROC curves for the fusion algorithms was compared to the area under 

the ROC curve for the CEM algorithm, producing a percent change metric. 

Image # HS SPI  improvement 
HS SPOT 

improvement 

MS SPI 

Improvement 

MS SPOT 

improvement 

GSD at scene center: 

spectral (polarimetric) 

1 68.4 % 35.7  % 80.4 % 61.7 % 5.13 m  (0.85 m) 

2 -1.5 % -0.6 % -0.8 % -1.4 % 5.13 m  (0.85 m) 

3 1.1 % -4.9 % 1.8 % -8.3 % 3.05 m  (0.51 m) 

 

Representative ROC curves calculated with the CEM, SPI and SPOT algorithms 

for Image 1 are shown in Figure 53.  Because the sensor was in the sun’s specular lobe, 

with both the sun and sensor at relatively large zenith angles, a significant polarimetric 

signal was expected.  The ROC curves demonstrate that both fusion algorithms 

outperformed the purely spectral CEM algorithm for the viewing geometry associated 

with Image 1. 

 

Figure 53.  Hyperspectral ROC curves were generated from Image 1 (with the sensor near the sun’s 

specular reflection) using the CEM (solid line), SPI (dotted line) and SPOT (dashed line) algorithms. 

 

× 10-3
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Representative ROC curves calculated with the CEM, SPI and SPOT algorithms 

for Image 2 are shown in Figure 54.  This viewing geometry differed from Image 1 

because the sensor was only separated from the sun by a relative azimuth angle of 90°, 

although both the sun and sensor were maintained at the same large zenith angles.  The 

ROC curves demonstrate that both fusion algorithms essentially performed the same as 

the purely spectral CEM algorithm for Image 2, meaning that incorporating polarimetric 

information provided no added value. 

 

Figure 54.  Hyperspectral ROC curves were generated from Image 2 (with the sensor at a 90° 

azimuth angle from the sun) using the CEM (solid line), SPI (dotted line) and SPOT (dashed line) 

algorithms. 

One possible explanation was that the polarimetric contrast between the target vehicles 

and the background was reduced due to decreasing pBRDF values and incorporating 

upwelled radiance.  The magnitude of the pBRDF was decreased because the target was 

× 10-3
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viewed from a perspective away from the direction of the sun’s specular reflection, 

resulting in a decrease in reflected polarimetric radiance from the target.  Further, if the 

car is generally flat when viewed from above, the reflected polarization is polarized 

horizontally [Schott 2009].  However, since the polarization of the upwelled radiance is 

always perpendicular to the sun-target-sensor plane [Schott 2009], the polarimetric 

signature of the upwelled radiance was instead oriented at +45° (rather than horizontal for 

Image 1), making the polarimetric signature of a target pixel less distinctive.  When the 

pBRDF and atmospheric effects combined to reduce the contrast between target and 

background pixels, the target pixels were less likely to be ranked as highly 

polarimetrically anomalous by the TAD algorithm. 

Representative ROC curves calculated with the CEM, SPI and SPOT algorithms 

for Image 3 are shown in Figure 55.  This viewing geometry differed from Image 1 

because the sensor zenith angle was reduced from 50° to 10°, although the solar zenith 

angle and relative azimuth angle were unchanged.  The ROC curves demonstrate that 

both fusion algorithms again essentially performed the same as the purely spectral CEM 

algorithm for Image 2, highlighting another case where incorporating polarimetric 

information provided no added value.  One possible explanation for the lack of 

polarimetric impact was that the pBRDF value again decreased as the sensor was moved 

further away from the sun’s specular reflection.     
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Figure 55.  Hyperspectral ROC curves were generated from Image 3 (with the sensor at a 180° 

azimuth angle from the sun, but only a 10° zenith angle) using the CEM (solid line), SPI (dotted line) 

and SPOT (dashed line) algorithms. 

A second explanation was that when the sensor was positioned in the sun’s specular 

reflection lobe, the spectral sensor suffered from the spectral whitening effect, resulting 

in a decreased ability to distinguish the target from the background.  As the sensor was 

moved out of the specular reflection lobe, the level of spectral whitening was decreased, 

and performance was improved.  Some evidence of this effect may be observed by 

comparing the ROC curves from each of the images, as shown in Figure 56.  The ROC 

curves demonstrate that when polarimetric information provided the most increase in 

performance, the purely spectral CEM performance was the poorest for all the cases 

examined.  Further, the ROC curves indicate that the fusion algorithms also have the 

potential to outperform the CEM algorithm in several different viewing geometries.   

× 10-3
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Figure 56.  Hyperspectral ROC curves were generated from the series of images described in Table 5 

using the CEM (solid lines), SPI (dotted line) and SPOT (dashed line) algorithms.  Image 1 (black) 

was the scenario where polarimetric information increased performance the most, and it was also the 

scenario where the spectral sensor performed the poorest. 

In conclusion, the three different viewing geometries investigated in this study 

ensured that variations in the utility of polarimetric data were observed for the synthetic 

scene of interest.  Some part of the performance increase due to spectral and polarimetric 

data fusion may have been due to the spectral whitening effect reducing the capability of 

the spectral sensor in the sun’s specular lobe.  However, even though the spectral 

performance was worst in the sun’s specular lobe, leveraging the additional polarimetric 

information produced better performance than exploiting solely spectral data for any of 

the three viewing geometries examined.  The overall multimodal system performance is 
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therefore a complex combination spectral and polarimetric phenomenon, each of which 

varies in a different fashion.  Further, any increased capability due to fusion may be of 

different value for different applications, highlighting the need for a sensor trade study to 

thoroughly examine a range of possible viewing and illumination conditions.  The rest of 

this work will apply the process described in Sec. 4 to evaluate the fusion trade space.  

5.9 Section Summary 

This section explained several preliminary studies conducted to ensure the results 

of this project would be meaningful.  First, the effects of using a global versus local 

background mean vector and covariance matrix in the CEM algorithm were investigated, 

and using the global values was shown to provide suitable performance while minimizing 

computational requirements.  Next, the multispectral CEM and polarimetric TAD scores 

were shown to be reasonably uncorrelated, ensuring the second sensing modality was 

providing additional useful information.   

Then, the hyperspectral synthetic scene (GSD = 0.5 m) was calculated to have an 

SCR ≈ 30, while a red vehicle spectrum extracted from actual hyperspectral imagery of 

Rochester, NY (GSD ≈ 0.66 m  produced an SCR ≈ 50, verifying that sufficient variation 

was present in the synthetic background.  The polarimetric SCR was also quantified by 

analyzing the TAD metric, where the SCR was shown to vary dramatically as a function 

of sensor zenith angle, with a peak value around 20.  Alternatively, if the SCR was 

calculated using the DOP metric, the peak value was less than five for all sensor zenith 

angles.  The top 5% of polarimetrically anomalous pixels for a particular favorable 
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viewing geometry were shown to be composed of trees, roadways, grass, glass, roofing 

material, siding and vehicle paints.   

Next, the area under the ROC curve was calculated for several different SNR 

values, and SNR = 200, 100 or 50 were shown to be useful while SNR = 15 was shown to 

not be useful.  Additionally, the SNR = 50 value imposed the constraint that FAR = 0.001 

was the minimum useful FAR threshold for evaluating all cases.  Separately, the TAD 

was shown to perform better when applied to just the S1 and S2 bands as opposed to when 

applied to the S0, S1 and S2 bands because including S0 was likely to flag bright pixels as 

anomalous.  The TAD algorithm (applied to the S1 and S2 bands) then outperformed the 

RX algorithm (applied to either the S0, S1 and S2 bands or just the S1 and S2 bands) when 

analyzing polarimetric information for input into the SPI algorithm.  Then, the fusion 

algorithms were shown to perform better if anomalous pixels were determined from the 

complete set of polarimetric information (S0, S1 and S2 bands) rather than simply from the 

contrast information in the S0 band.  Finally, the CEM, SPOT and SPI algorithms’ 

performances were evaluated at three different viewing geometries, and the impact due to 

fusion was determined to be highly sensitive to viewing geometry due to both pBRDF 

and atmospheric effects.  This last study strongly motivates the rest of this study and 

points to the importance of a comprehensive trade study to understand the capabilities 

and limitations of sensors and acquisition conditions for scenarios of interest. 
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6 Results 

6.1 Section Overview 

Once the spectral and polarimetric characteristics of the synthetic scene had been 

validated, the FAR threshold had been chosen and preliminary experiments had shown 

promise, the full impact of incorporating polarimetric information was assessed.  For the 

first step, the fusion algorithms were applied assuming co-located multimodal sensors 

with no registration error. Then, the fusion algorithms were applied assuming a co-

located multimodal sensor with a single pixel of registration error.  Finally, the data were 

analyzed assuming each modality was positioned at its ideal acquisition location for a 

particular time of day.  The spectral and polarimetric images were registered to each 

other and then analyzed with the different fusion algorithms. 

When a co-located sensor was assumed, at every different solar zenith angle, 

sensor zenith angle, sensor relative azimuth angle and SNR value outlined in Sec. 4.5, the 

impact on both the hyperspectral and multispectral systems was evaluated as described in 

Sec. 4.9.  Then, performance trends were extracted by averaging the ratios from all 

azimuth angles (160° - 200°) for a particular solar zenith angle, sensor zenith angle and 

SNR values.  In the stoplight charts that follow, red designates cases where neither fusion 

algorithm achieved the goal, green depicts cases where the SPOT pixel fusion algorithm 

performed best and blue represents cases where the SPI decision fusion algorithm 

performed best.  Numbers in the cells quantify the percent improvement when the fusion 

algorithm was used. 
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6.2 Co-located Fusion with Perfect Registration 

The initial effort sought to evaluate the effectiveness of the fusion algorithms 

before complicating the problem with registration error or spatially separated imaging 

systems.  Fusion was defined to be useful at a particular viewing geometry if two 

conditions were met.  First, an off-nadir fusion algorithm had to outperform the off-nadir 

CEM algorithm for the same viewing geometry—the polarimetric information shouldn’t 

degrade performance.  Second, the off-nadir fusion algorithm should perform better than 

the nadir CEM algorithm to justify capturing off-nadir images in the first place.  If both 

conditions were met, that particular off-nadir viewing geometry was deemed useful.  A 

percent increase in performance was then determined by comparing the average fusion 

algorithm ratio value to the average CEM ratio value as shown in Eq. 37: 

 

Equation 38 shows how the RatioCEM and RatioFusion terms can be rewritten to explicitly 

show the input values: 

 

Finally, the calculation was simplified, as shown in Eq. 39, so that the percent difference 

value relied only on ROC curve area values: 

 

When both fusion algorithms met both of the conditions, the performance of the 

better fusion algorithm was reported, but the percent difference in performance was 
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quantified for two different scenarios.  First, off-nadir fusion was compared to off-nadir 

CEM to determine the impact of incorporating polarimetric information if forced to 

image from a particular orientation.  Second, off-nadir fusion was compared to nadir 

CEM to assess whether an off-nadir sensor orientation might make more sense if the user 

had the freedom to task the sensor at will, and these percent improvement values are 

shown in parentheses in the tables below.  The results for the multispectral sensor 

described in Sec. 4.3 are shown in Table 7, suggesting fusion provides little benefit 

unless the spectral SNR value is low.  One possible reason for the lack of improvement in 

performance is that the spectral GSD was already quite small (0.5 m at nadir) in the 

multispectral case, producing more spectrally pure pixels to easily differentiate targets 

from the background. 

Table 7.  The effect of both fusion algorithms is summarized for the 8 band multispectral sensor 

(nadir GSD = 0.5 m) across 5 solar zenith angles, 7 sensor zenith angles and 5 different SNR values 

with perfect registration.  The data suggest fusion may be useful in the MS case at lower SNR values.  

Percent improvement metrics are defined vs. off-nadir CEM (or vs. nadir CEM in parentheses). 

MS 
     SNR = 200 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10           

20           

30           

40           

50           

60           

70           
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MS 
     SNR = 100 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10           

20           

30           

40           

50           

60           

70           

MS 
     SNR = 80 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10           

20           

30           

40           

50           

60           

70           

MS 
     SNR = 60 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10         166% (148%) 

20         107% (118%) 

30         20.9% (10.9%) 

40       9.2% (62.2%)   

50   2.5% (18.9%) 1.5% (41.7%)     

60   12.1% (1.8%) 0.7% (18.3%)     

70           
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MS 
   SNR = 50 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10         826% (911%) 

20         345% (720%) 

30         53.2% (267%) 

40     0.9% (674%) 8.1% (779%) 0.9% (242%) 

50   3.7% (248%) 2.6% (519%) 0.4% (683%) 0.4% (176%) 

60 2.9% (29.2%) 17.4% (208%) 0.7% (423%) 0.5% (523%)   

70     3.9% (257%)     

 

However, in the larger GSD hyperspectral case shown in Table 8 several trends 

appeared.  First, the theoretical sensitivity of polarimetric remote sensing to sun-target-

sensor geometry was confirmed since no fusion algorithm was useful in every 

orientation.  Second, in cases where polarimetric information enhanced capability, the 

SPI decision fusion algorithm outperformed the SPOT pixel fusion algorithm—

reinforcing the notion that since spectral and polarimetric sensors observe different 

phenomena, the data from each should first be evaluated on its own merit.  Third, the 

added polarimetric information produced the most increase in performance near the sun’s 

specular reflection, providing a target detection capability where spectral sensors would 

otherwise become less effective due to spectral whitening.  Finally, for cases where the 

sun was lower on the horizon, as the system SNR decreased (0800 & 0700 cases) the 

performance difference due to fusion increased relative to off-nadir CEM but decreased 

relative to nadir CEM. 
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Table 8.  The effect of both fusion algorithms is summarized for the 90 band hyperspectral sensor 

(nadir GSD = 3.0 m) across 5 solar zenith angles, 7 sensor zenith angles and 5 different SNR values 

with perfect registration.  The data suggest fusion is useful when the HS sensor is positioned near the 

sun’s specular reflection.  Percent improvement metrics are defined vs. off-nadir CEM (or vs. nadir 

CEM in parentheses). 

HS 
     SNR = 200 Solar Zenith Angle 

   Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10 21.9% (30.7%) 5.8% (11.6%) 0.8% (6.0%)     

20 35.3% (40.9%) 23.9% (34.4%) 4.4% (11.0%)     

30 41.1% (54.1%) 41.3% (57.7%) 11.9% (23.2%) 1.5% (6.2%)   

40 22.3% (26.5%) 33.2% (65.8%) 24.2% (47.8%) 3.9% (19.4%)   

50 2.7% (21.1%) 31.8% (63.4%) 29.2% (46.4%)     

60 2.5% (12.7%) 4.0% (24.4%)       

70           

HS 
     SNR = 100 Solar Zenith Angle 

   Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10 19.4% (28.2%) 5.0% (10.4%) 1.1% (6.0%)     

20 33.0% (38.6%) 21.7% (31.5%) 4.1% (10.4%)     

30 37.7% (50.7%) 38.9% (54.4%) 9.9% (20.4%) 0.4% (4.2%)   

40 20.5% (24.7%) 31.4% (63.1%) 20.5% (42.4%) 4.3% (12.8%)   

50 2.8% (21.1%) 30.9% (60.2%) 36.1% (37.5%)     

60           

70           

HS 
     SNR = 80 Solar Zenith Angle 

   Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10 18.5% (27.6%) 5.0% (10.0%) 0.9% (5.6%)     

20 32.0% (38.0%) 21.3% (30.7%) 3.6% (9.7%)     

30 37.2% (50.5%) 37.5% (52.7%) 8.8% (18.8%) 0.4% (3.1%)   

40 20.4% (24.9%) 30.6% (61.6%) 19.8% (40.8%) 6.3% (9.5%)   

50 3.0% (21.7%) 30.6% (58.1%) 44.7% (33.5%)     

60           

70           
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HS 
     SNR = 60 Solar Zenith Angle 

   Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10 18.4% (28.0%) 5.0% (10.7%) 0.5% (5.9%)     

20 31.7% (38.0%) 21.0% (31.1%) 2.9% (9.7%)     

30 36.7% (50.4%) 35.9% (51.6%) 8.0% (18.8%) 0.6% (1.7%)   

40 20.2% (25.0%) 29.3% (61.1%) 20.9% (42.6%) 8.7% (3.3%)   

50   32.5% (56.6%) 71.7% (25.2%)     

60           

70           

HS 
     SNR = 50 Solar Zenith Angle 

   Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10 17.7% (26.9%) 4.9% (11.4%) 0.2% (7.0%)     

20 30.9% (37.0%) 20.5% (31.5%) 2.5% (10.7%)     

30 36.6% (49.7%) 34.6% (51.1%) 7.6% (20.0%) 0.8% (1.4%)   

40 19.7% (24.3%) 28.7% (61.0%) 20.9% (42.6%)     

50   38.0% (55.8%) 115% (15.0%)     

60           

70           

 

6.3 Co-located Fusion with Single Pixel Registration Error 

The next step was to introduce a single pixel of registration error as described in 

Sec. 4.6 and perform the same analysis demonstrated in Sec. 6.2.  Table 9 summarizes the 

results from the multispectral case, and when they were compared to the perfect 

registration scenario in Table 7 the results were quite similar.  Fusion still only appeared 

useful at low spectral SNR values.  Although the numbers indicated a significant increase 

compared to nadir CEM performance, only a small increase was observed when 

compared to off-nadir CEM performance. 

 



 

134 

Table 9.  The effect of both fusion algorithms is summarized for the 8 band multispectral sensor 

(nadir GSD = 0.5 m) across 5 solar zenith angles, 7 sensor zenith angles and 5 different SNR values 

with a single pixel of registration error.  The data suggest fusion may be useful in the MS case at 

lower SNR values.  Percent improvement metrics are defined vs. off-nadir CEM (or vs. nadir CEM 

in parentheses). 

MS 
     SNR = 200 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10           

20           

30           

40           

50           

60           

70           

MS 
     SNR = 100 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10           

20           

30           

40           

50           

60           

70           

MS 
     SNR = 80 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10           

20           

30     0.1% (9.3%)     

40           

50           

60           

70           
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MS 
     SNR = 60 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10         74.6% (62.8%) 

20 0.2% (32.7%)       52.8% (61.9%) 

30 1.5% (31.8%) 1.6% (42.0%) 0.5% (2.3%) 0.4% (87.2%) 31.7% (21.2%) 

40 0.5% (24.5%) 3.6% (37.3%) 2.7% (85.6%) 1.3% (51.2%)   

50   2.0% (18.5%) 2.5% (42.8%)     

60           

70           

MS 
     SNR = 50 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10 0.1% (242%)       434% (481%) 

20 0.3% (221%)       230% (508%) 

30 1.7% (220%) 1.7% (343%) 0.9% (893%) 0.7% (846%) 89.9% (359%) 

40 0.6% (199%) 3.6% (319%) 3.1% (693%) 1.5% (723%) 0.8% (246%) 

50 0.3% (120%) 2.3% (243%) 2.4% (518%) 1.0% (29.7%)   

60           

70     0.4% (237%)     

 

 For the hyperspectral case, the results were generally similar to the perfect 

registration scenario.  When the results in Table 10 (with registration error) were 

compared to the results in Table 8 (with perfect registration), a distinct decrease in fusion 

impact was observed.  Although the SPI algorithm continued to enhance performance to 

some degree, the improvement relative to both nadir and off-nadir CEM decreased.  The 

results also demonstrated that the SPI algorithm was reasonably robust to registration 

error.  Further, the SPOT algorithm became the fusion algorithm of choice for sensor 

zenith angles of 50° or 60°.  The increased utility of the SPOT algorithm for the scenario 

with registration error implied that the vehicle surfaces may not have been the most 

polarizing material in the scene.  Instead, perhaps the polarimetric signature from nearby 
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window glass had been aligned with the spectral signature of target vehicle paint during 

the registration process, boosting the visibility of the target pixel.  Finally, as the sensor 

zenith angle became more oblique, the percent increase in performance attained with 

fusion depended heavily on the reference scenario.     

Table 10.  The effect of both fusion algorithms is summarized for the 90 band hyperspectral sensor 

(nadir GSD = 3.0 m) across 5 solar zenith angles, 7 sensor zenith angles and 5 different SNR values 

with one pixel of registration error.  The data suggest fusion is useful when the HS sensor is 

positioned near the sun’s specular reflection.  Percent improvement metrics are defined vs. off-nadir 

CEM (or vs. nadir CEM in parentheses). 

HS 
     SNR = 200 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10 12.9% (21.1%) 4.1% (9.8%) 1.5% (6.8%)     

20 12.3% (16.9%) 14.5% (24.2%) 3.6% (10.2%)     

30 10.6% (20.8%) 16.7% (30.4%) 6.7% (17.4%) 0.8% (5.4%)   

40 5.3% (9.0%) 5.2% (31.0%) 9.5% (30.3%) 0.5% (15.5%)   

50 1.8% (20.1%) 2.5% (27.2%) 3.1% (16.7%)     

60 2.2% (12.1%) 1.5% (21.5%)       

70           

HS 
     SNR = 100 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10 11.1% (19.3%) 3.8% (9.1%) 1.8% (6.7%)     

20 12.4% (17.1%) 13.6% (22.8%) 3.4% (9.7%)     

30 10.3% (20.6%) 15.8% (28.9%) 4.9% (14.8%)     

40 4.7% (8.3%) 3.9% (29.0%) 5.5% (24.5%)     

50 1.9% (20.1%) 2.7% (25.6%) 3.3% (4.5%)     

60           

70           
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HS 
     SNR = 80 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10 11.2% (19.8%) 3.7% (8.6%) 1.5% (6.3%)     

20 12.2% (17.4%) 13.3% (22.0%) 3.1% (9.1%)     

30 10.0% (20.6%) 14.5% (27.0%) 3.9% (13.7%)     

40 4.7% (8.6%) 2.4% (26.7%) 5.0% (23.5%)     

50 2.0% (20.5%) 2.8% (24.6%)       

60           

70           

HS 
     SNR = 60 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10 10.9% (19.8%) 3.6% (9.3%) 1.0% (6.4%)     

20 11.8% (17.2%) 13.2% (22.7%) 2.4% (9.2%)     

30 9.7% (20.6%) 12.3% (25.3%) 2.9% (13.2%) 0.1% (1.4%)   

40 4.4% (8.6%) 4.2% (29.8%) 5.2% (23.1%)     

50 2.0% (20.4%) 2.8% (21.6%)       

60           

70           

HS 
     SNR = 50 Solar Zenith Angle 

  Sensor Zenith 
 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10 10.7% (19.4%) 3.5% (9.9%) 0.7% (7.6%)     

20 11.4% (16.5%) 12.8% (23.0%) 2.0% (10.2%)     

30 9.4% (20.0%) 10.6% (24.2%) 2.5% (14.4%)     

40 4.1% (8.0%) 4.7% (30.9%) 5.2% (24.2%)     

50 1.7% (18.4%) 3.3% (16.4%)       

60           

70           

 

When compared against off-nadir CEM, fusion generally provided a modest 

impact, while a more substantial impact was typically observed when compared against 

nadir CEM.  Therefore, it appeared that simply moving the sensor off-nadir significantly 

enhanced performance in some cases.  One possible explanation for this lies in the way 
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the problem was framed—since target detection was performed at the smaller PI GSD, a 

single hard-to-find target vehicle might represent many missed pixels at nadir.  However, 

as the sensor moved off-nadir, the number of pixels on the focal plane remained constant 

but the GSD increased.  As a result, the same difficult target represented fewer missed 

target pixels.  The effects of a larger GSD and fewer difficult targets could therefore 

combine to increase the area under the resulting off-nadir ROC curve—while reducing 

the ability to exactly pinpoint the location on the ground of any targets identified. 

6.4 Multiple Sensor Platforms 

The first step in analyzing the multiple sensors scenario was determining the 

optimum viewing geometry for each sensing modality at a given solar zenith angle as 

described in Sec. 4.12, and Table 11 summarizes the results.  In general, the polarimetric 

sensor was more effective at more oblique sensor zenith angles, while the multispectral 

sensor was most effective near nadir.  Interestingly, the hyperspectral sensor was most 

effective at reasonably oblique sensor zenith angles rather than angles near nadir. 

Table 11.  For each solar zenith angle, the sensor zenith and azimuth angles where each modality was 

most effective are shown.  The polarimetric value is shown in blue, the multispectral value is shown 

in red, and the hyperspectral value is shown in black. 

SNR = 200 
 

Solar Zenith Angle 
 Sensor Zenith 

 Angle 20 (1200) 34 (1000) 55 (0800) 66 (0700) 77 (0600) 

10 170 170 160   160 / 200 

20       170   

30 185 / 195         

40     190 195 190 

50   185 / 175   185   

60     180     

70           
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Once the ideal viewing angles had been established, the polarimetric and spectral images 

were registered as described in Sec. 4.11 (and shown in Figure 57) based on 36 hand-

selected GCPs.   

 

Figure 57.  Several RGB DIRSIG images are displayed to illustrate the multiple sensor registration 

process for a solar zenith angle of 20°.  (Left) The polarimetric data was drawn from an image 

captured at a sensor zenith angle of 30° and a sensor azimuth angle of 185°.  (Center) The 

hyperspectral data was drawn from an image captured at a sensor zenith angle of 30° and a sensor 

azimuth angle of 195°.  (Right)  The hybrid image contains registered polarimetric and hyperspectral 

data from multiple sensors. 

Next, the quality of registration was assessed via the total RMS error metric shown in 

Table 12.  A total RMS error value (in pixels) was calculated for each of the registered 

spectral and polarimetric data sets derived from the viewing geometries previously 

identified in Table 11. 

Table 12.  The total RMS error (in smaller GSD MS/PI pixels) is displayed for the MS/HS & PI 

registered data set derived from the viewing geometries described in Table 11. 

Solar zenith angle 

(degrees) 

MS fusion RMS  

registration error (pixels) 

HS fusion RMS 

registration error (pixels) 

77 (0600) 5.24 4.98 

66 (0700) 4.46 2.20 

55 (0800) 5.19 2.92 

34 (1000) 5.55 1.49 

20 (1200) 3.51 0.94 

 

Finally, the hybrid spectral-polarimetric images were analyzed as described in Sec. 4.12, 

producing an area under the ROC curve for each off-nadir algorithm.  Those areas were 
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then divided by the area under the ROC curve generated by applying the multispectral (or 

hyperspectral) CEM algorithm at nadir, producing the ratio values shown in Table 13. 

Table 13.  The values in the table represent the ratio of the area under the test algorithm ROC curve 

to the area under the multispectral (or hyperspectral) CEM ROC curve at nadir.  Red means the off-

nadir algorithm didn’t perform as well as nadir CEM.  Green and yellow both represent cases where 

the off-nadir algorithm was better than nadir CEM, but green represents the best choice. 

Solar Zenith Angle MS CEM MS SPI MS SPOT HS CEM HS SPI HS SPOT 

77 (0600) 0.456 0.222 0.270 1.229 0.306 1.087 

66 (0700) 0.362 0.150 0.275 1.329 0.018 1.174 

55 (0800) 0.450 0.392 0.372 1.339 0.717 1.276 

34 (0900) 0.425 0.408 0.387 1.428 0.438 1.310 

20 (1000) 0.457 0.433 0.423 1.274 1.150 1.201 

 

The results indicated that CEM at nadir was the most powerful algorithm for the 

low GSD multispectral scenario, which was consistent with results shown in Sec. 6.2.  In 

the hyperspectral scenario, the results showed that the off-nadir CEM algorithm yielded 

the best performance.  This finding was in contrast to Sec. 6.2, which indicated that 

decision fusion should produce the best results.  Further, in the hyperspectral case, the 

SPOT pixel fusion algorithm outperformed both the SPI decision fusion algorithm and 

the CEM algorithm at nadir.  The root of this effect was the relative weighting of 

polarimetric information to spectral information in the fusion algorithms.  The SPI 

decision fusion algorithm weighted the polarimetric TAD score and spectral CEM scores 

almost equally, while in the SPOT decision fusion algorithm the polarimetric information 

was weighted as only one of ninety one total bands of information.  In essence, the results 

indicated that the polarimetric information was not being correctly aligned with the 

spectral information, and the total impact of the errors introduced by the registration 

process was proportional to the weight of the polarimetric information in each of the 
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fusion algorithms.  Two main factors were responsible for this disconnect:  registration 

error and target obscuration.   

The most likely source of error came from applying 2-D registration techniques to 

images taken from different oblique perspectives that contain significant topographic 

variation [Schott 2007].  Since the 2-D solution calculates everything relative to a 

common plane, values associated with extremely high or low points will be offset 

spatially from their true location after the registration process.  The second major source 

of error was obscuration, which occurred when a target was visible in one image but not 

in the other due to a change in the sensor’s perspective.  If no information about the target 

ever reached the focal plane for a given modality, then the required values were drawn 

from the nearest neighbor pixel.  In the highly cluttered environment studied for this 

scenario, it was likely that the nearest neighbor and the pixel of interest were not 

composed of the same material—meaning a pure target pixel would appear as a mixed 

pixel in terms of spectral and polarimetric information, making it even harder to detect. 

In conclusion, fusing spectral and polarimetric data from separate sensors did not 

produce the expected increase in performance.  Rather than highlighting a 

phenomenological effect, the difficulty was due to inaccurately aligning correct spectral 

and polarimetric data for every pixel in the scene.  The registration effort was hampered 

by differences in oblique perspective and significant topological variation in the scene. 

Since the quality of the fusion product seems directly tied to the registration accuracy, 

future efforts could revisit this scenario by applying advanced 3-D registration 

techniques. 



 

142 

6.5 Phenomenology Investigation 

The results presented in Sections 6.2 and 6.3 indicated that the SPI decision fusion 

algorithm was the more useful fusion algorithm, so the next step was to investigate the 

phenomenology behind the observed effect.  The viewing geometry investigated was 

drawn from the 0800 scenario of Sec. 6.2, with a solar zenith angle of 55°, a sensor zenith 

angle of 40°, a sensor azimuth angle of 180°, perfect registration, a polarimetric GSD of 

0.5 m and a hyperspectral GSD of 3 m.  In this configuration, SPI provided a 24% 

improvement in performance, and an RGB image of this scene is shown in Figure 58.   

 

Figure 58.  RGB DIRSIG image rendered with a solar zenith angle of 55°, a sensor zenith angle of 

40°, and a sensor azimuth angle of 180°. 

The CEM, TAD and SPI score maps were compared to the DIRSIG truth target map, 

highlighting the test algorithm score for every target in the scene.  In this manner, high 

scoring, easier to find targets could be separated from low scoring overlooked targets. 

6.5.1 CEM Performance 

The CEM algorithm was the first algorithm tested, since it was both the basis for 

comparison and a critical component of the SPI algorithm.  The CEM algorithm 
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quantified how well a test pixel matched a reference target spectrum, and Figure 59 

shows the target pixels that were the easiest in the scene for the CEM algorithm to find.  

These targets seemed to be either well-lit target pixels or targets placed in a homogenous 

background.  Highlighting the target in a homogenous background makes sense because 

the target pixels are spectrally distinct from the spectral clutter of all nearby background 

pixels.  Similarly, well-lit target pixels are much more likely to exactly match the 

measured target spectrum used as an input to the CEM algorithm since the reflected 

target signature dominates the recorded signal and the original spectrum was presumably 

recorded under ideal viewing conditions. 

 

Figure 59.  The easiest targets in the scene for the CEM algorithm to find were either well-lit target 

pixels or targets in a homogenous background.  Note that these images are all shown at the lower 

polarimetric GSD (0.5 m) for later comparison to the SPI and TAD algorithms.  

Once the more obvious targets had been noted, the focus turned to targets that 

were overlooked.  Figure 60 shows the three most difficult targets to find in the scene.  In 

the first case, the vehicle was in a heavily shadowed and obscured location, so the test 

pixel was a heavily mixed pixel with a low SNR.  In the second case, the vehicle was 

well-lit but surrounded by relatively bright man-made features.  At a large GSD, it may 

have been difficult to discriminate the bright mixed target pixel from the bright 

background pixel.  Additionally, perhaps this viewing geometry, coupled with the car’s 
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surface geometry, put the sensor in the sun’s specular reflection.  If so, the spectral 

whitening effect would mask the target signature and make the pixel harder to 

differentiate from other bright false alarms.  Finally, the last target was well-lit but 

located in a cluster of decoy vehicles.  The target signature was therefore likely to be 

mixed with a significant contribution from the other vehicles when the large spectral 

GSD was applied, again reducing the probability of an exact match with the desired 

target spectrum in the CEM algorithm.  

 

Figure 60.  The hardest targets in the scene for the CEM algorithm to find were shadowed targets, 

targets producing a specular reflection from the sun, and targets located in a heavily cluttered 

environment.  Note that these images are all shown at the lower polarimetric GSD (0.5 m) for later 

comparison to the SPI and TAD algorithms. 

6.5.2 TAD Performance 

The TAD algorithm examined the S1 and S2 bands of polarimetric information, 

and separated polarimetrically anomalous pixels from uninteresting background pixels.  

Figure 61 demonstrates that the easiest target pixels for the TAD algorithm to identify 

were the well-lit edges of target vehicles, representing sun-target-sensor geometries 

where the combined effects of the pBRDF and the polarized upwelled radiance produced 

a distinct polarimetric signal.  Additionally, the easiest targets to identify were all in a 

significant amount of spectral clutter with several nearby decoy vehicles.  When 
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compared to the CEM analysis, the small polarimetric GSD better preserved distinctive 

information about the target.  The TAD algorithm then compared those distinctive 

signatures to the scene as a whole and flagged them as different. 

 

Figure 61.  The easiest targets in the scene for the TAD algorithm to find were well-lit edges of target 

vehicles.  Note that these RGB images are all shown at the polarimetric GSD (0.5 m). 

However, the TAD algorithm was not successful in all cases.  Figure 62 shows 

that shadowed and obscured targets were among the hardest target pixels to discern from 

the background.   

 

Figure 62.  Shadowed and obscured targets vehicles were among the least anomalous target pixels in 

the scene.  Note that these RGB images are all shown at the polarimetric GSD (0.5 m). 

 When compared to other well-lit man-made objects in the scene, shadowed and obscured 

targets produced a much less anomalous polarimetric signature for three main reasons.  

First, since the sun was blocked, there was no dominant directly reflected radiance term 
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contributing to the target’s polarimetric signature.  Rather, the downwelled radiance, with 

contributions from a variety of polarization states, interacted with the target material 

pBRDF to produce a much smaller polarized signature than that of the well-lit targets.  

Second, the dominant polarization state of the reflected downwelled radiance from 

shadowed target vehicles was not necessarily consistent with that from the well-lit 

vehicles; therefore this viewing geometry may not have been ideal after the upwelled 

radiance polarization state was taken into account.  Third, the raw radiance values of 

shadowed areas in the scene were relatively low when seen through each linear polarizing 

filter.  When the random noise field was applied to each pixel, the magnitude of the noise 

was based on a scene-wide SNR value—but since the polarimetric signature was based 

on differences between filtered images when expressed as a Stokes vector, even relatively 

small noise values had a dramatic effect.  In essence, the polarimetric SNR of 200 

appeared insufficient to preserve the small differences between target and background 

pixels for shadowed areas. 

6.5.3 SPI Performance 

Once the spectral and polarimetric algorithms had been assessed independently, 

the SPI algorithm scores were examined to determine which target scores were enhanced 

the most by fusing polarimetric information with existing spectral information.  Eqs. 40-

42 demonstrate how the SPI impact was quantified for each target pixel by comparing the 

SPI score to the squared CEM score: 
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Figure 63 shows some of the target pixels where the SPI algorithm had the most impact.  

Predictably, the SPI scores increased most where the TAD algorithm flagged the most 

anomalous pixels, and as in Sec. 6.5.2, the most anomalous target pixels tended to be 

well-lit edges of vehicles. 

 

Figure 63.  The SPI algorithm had the most impact on well-lit edges of target vehicles.  Note that 

these RGB images are all shown at the polarimetric GSD (0.5 m). 

 Next, the SPI score map was examined to determine which target pixels were 

least impacted by considering the additional polarimetric information, and the results are 

shown in Figure 64.  Two of the three least impacted targets are shadowed and obscured.  

Recall that Sec. 6.5.1 showed that the CEM algorithm missed shadowed targets while 

Sec. 6.5.2 showed that the TAD algorithm also struggled with shadowed targets.  Given 

that both input algorithms missed this class of targets, it’s not surprising that the SPI 

algorithm also missed the shadowed targets.  The third least-impacted target was a well-

lit vehicle, a slight surprise until one considers that Sec. 6.5.1 showed the CEM algorithm 

assigned a very low score to that vehicle.  Because of the way the SPI algorithm was 

constructed, the polarimetric information was able to boost the pixel’s score somewhat, 

but the score was then multiplied by a very small CEM score to produce a small final 
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score.  This particular target pixel was missed because the CEM algorithm effectively 

vetoed the pixel. 

 

Figure 64.  The SPI algorithm had the least impact on shadowed targets or bright targets with a low 

CEM score.  Note that these RGB images are all shown at the polarimetric GSD (0.5 m). 

In essence, the SPI algorithm appeared to boost the score of well-lit target pixels in 

clutter where a heavily mixed spectral pixel was assigned an average CEM score initially.  

Performance gains with the SPI algorithm occurred by weeding out bright false alarm 

background pixels from spectrally mixed target pixels rather than by finding targets that 

the CEM algorithm completely missed.  

6.6 Missed Dark Targets:  Sampling or SNR? 

Once it became clear that both the CEM and TAD algorithms missed dark targets, 

the next task was to determine whether this was an SNR issue or a sampling issue.  The 

same scene was rendered again in DIRSIG at a much higher fidelity to rule out issues 

with DIRSIG sampling.  The hemispherical sampling of the pBRDF was increased 

dramatically, the ray tracing was set to a 5×5 oversample grid, and the number of 

bounces was increased to ensure adjacency effects were captured.  These modifications 

increased the computation time to render the scene from about 12 hours to about a 

week—impractical for a full trade study with today’s computers, but not unreasonable to 
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test the concept.  Figure 65 shows a zoomed-in image of an ROI containing several 

shadowed vehicles—one of which is a target—drawn from Figure 58.      

 

Figure 65.  An ROI of Figure 58 contains several shadowed vehicles, one of which is a target. 

This ROI was evaluated with several different metrics for both the standard trade study 

scene and the high fidelity oversampled scene to determine whether SNR or sampling 

issues were the primary reason for overlooking shadowed targets. 

6.6.1 Increased Sampling Fidelity 

Once the higher fidelity scene was generated, both scenes were analyzed with the 

spectral and polarimetric SNR values fixed at 10,000.  Although a different random noise 

field was applied to each scene, the variation applied to any given pixel was quite small, 

isolating the effects of sampling by effectively ruling out any influence due to noise.  

Figure 66 shows the hyperspectral CEM ROC curves derived from scenes generated with 

both the standard method described in Sec. 4.4 and the higher fidelity sampling described 

in Sec. 6.6.  Although the ROC curves do not match exactly, the trends are consistent 

between the two. 
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Figure 66.  The HS CEM ROC curves were derived from scenes rendered with both the standard 

fidelity sampling (dashed line) and the higher fidelity spatial and pBRDF sampling (solid line). 

Because the pBRDF was also sampled more extensively, the performance of both fusion 

algorithms was evaluated as well.  Figure 67 shows the hyperspectral SPI ROC curves 

derived from the same scene with both the standard sampling method described in Sec. 

4.4 and the higher fidelity sampling described in Sec. 6.6, while Figure 68.  Increasing 

the sampling fidelity seemed to slightly decrease the performance of the SPI algorithm, 

while increasing SPOT performance for some targets and decreasing performance for 

others.  However, the general shapes of the ROC curves were consistent.  Additionally, 

since the measure of merit described in Sec. 4.9 was a percent difference between the 

area under the fusion and CEM ROC curves, slightly overestimating performance in both 

the fusion and purely spectral cases with the coarser sampling should have a minimal 

effect on the final answer.   
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Figure 67.  HS SPI ROC curves were derived from scenes rendered with both the standard fidelity 

sampling (dashed line) and the higher fidelity spatial and pBRDF sampling (solid line). 

 

Figure 68.  HS SPOT ROC curves were derived from scenes rendered with both the standard fidelity 

sampling (dashed line) and the higher fidelity spatial and pBRDF sampling (solid line). 



 

152 

Next, the ROI shown in Figure 65 was analyzed to determine the DOLP, TAD 

score, and hyperspectral CEM score for each pixel.  Figure 69 shows the DOLP metrics 

generated from the ROI for both levels of sampling.  In both of these images, the 

shadowed vehicles were barely distinguishable from the nearby shadowed background 

pixels.  In fact, the difference in DOLP between the shadowed vehicles and background 

was only about 0.003 for both images, while the DOLP magnitude of the shadowed 

vehicles hovered around 0.138 in both cases.  As a result, it appeared that increasing the 

sampling did not affect the DOLP metric. 

 

  

Figure 69.  (Left)  The DOLP metric derived from scenes rendered with the standard fidelity 

sampling (2x2 oversamples) for this trade study.  (Right)  The DOLP metric derived from scenes 

rendered at the higher fidelity sampling (5x5 oversamples, more extensive pBRDF) for this trade 

study. 

Figure 70 shows the TAD score of the ROI derived from both the normally 

sampled and the highly oversampled images.  Some differences were apparent—the 

edges of vehicles in the highly oversampled image were easier to distinguish from the 

background pixels.  In the normally sampled image, the difference between the most 

anomalous shadowed vehicle pixels and the shadowed background pixels was about 

0.003.  In contrast, the difference between the vehicle edges and the background was 
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about 0.006 in the highly oversampled image.  In both cases, the shadowed background 

pixels were given an almost zero by the TAD algorithm, so the difference between the 

background and the shadowed vehicles was essentially the magnitude of the TAD score.  

Although this implied almost twice as much contrast between shadowed vehicles and the 

shadowed background pixels was achieved by highly oversampling, recall that the TAD 

score could range between zero and one.  When the entire scene was considered, the 

differences in scores assigned by the TAD algorithm due to better sampling were 

insignificant because of the small magnitudes of the score—a 200% improvement in 

performance was relatively meaningless because the initial value was so small. 

  

Figure 70.  (Left) The TAD score derived from scenes rendered with the standard fidelity sampling 

(2x2 oversamples) for this trade study.  (Right)  The TAD score derived from scenes rendered at the 

higher fidelity sampling (5x5 oversamples, more extensive pBRDF) for this trade study. 

Figure 71 shows the hyperspectral CEM scores derived from the ROI.  In both 

images, the pixel containing the target vehicle was scored highest.  However, the 

difference in score between the target pixel and the background pixels was about 0.03, 

and the target pixel scored only 0.035 out of one in both cases.  Therefore, increasing the 

sampling did not significantly change the CEM scores. 
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Figure 71.  (Left) The HS CEM score derived from scenes rendered with the standard fidelity 

sampling (2x2 oversamples) for this trade study.  (Right)  The HS CEM score derived from scenes 

rendered at the higher fidelity sampling (5x5 oversamples, more extensive pBRDF) for this trade 

study. 

In summary, examining the desired ROI with the DOLP metric, TAD score, and 

hyperspectral CEM scores derived from both the normally sampled and highly 

oversampled images demonstrated that the failure to find shadowed targets was not due 

to insufficient sampling in DIRSIG.  Once sampling issues were ruled out, the next 

avenue to explore was the effect of the polarimetric SNR. 

6.6.2 SNR Effects 

Further investigation of the SNR required to distinguish shadowed target pixels 

yielded some surprising results.  To verify that missing shadowed targets was an issue of 

SNR, this ROI was analyzed via the DOLP, S1 and S2 metrics first at a polarimetric SNR 

of 200—the value used throughout this experiment—and then at a polarimetric SNR of 

10,000 to represent an upper bound on the scenario after any specialized image-

processing techniques had been employed.  Figure 72 shows the DOLP value for every 

pixel in the ROI after the noise field has been applied.   
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Figure 72.  (Left)  DOLP metric for ROI in Figure 65 at SNR = 200.  (Right)  DOLP metric for the 

same ROI at SNR = 10,000.  In the lower SNR case, the added noise masked any signal from the 

vehicles.  Even in the higher SNR case, the vehicles were barely distinguishable from the 

background.  

In the SNR = 200 case, the vehicles were indistinguishable from the background and the 

entire ROI (except the doorway) appears as a random noise field.  However, when the 

SNR = 10,000 case was examined, the vehicles were perhaps visually distinguishable, but 

the difference between the vehicles and the background was a DOLP value of only about 

0.002. 

  Next, the ROI was analyzed via the S1 metric, which measures the difference 

between incoming horizontally and vertically polarized light.  Figure 73 shows the results 

when the same SNR values were considered.  In the SNR = 200 case, the added noise 

again overpowered any distinct signals from the vehicles, while in the higher SNR case, 

the vehicles and glass windows in the building were distinguishable from the 

background.  However, the building windows and doorway were still more distinct than 

the vehicles, and the S1 value from the vehicles differed from the background by only 

about 0.015 .   
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Figure 73.  (Left)  S1 metric for ROI in Figure 65 at SNR = 200.  (Right)  S1 metric for the same ROI 

at SNR = 10,000.  In the lower SNR case, the added noise washed out any structure in the signal, 

while in the higher SNR case, the vehicles and glass windows in the building were distinguishable 

from the background.  

 Finally, the S2 metric was computed for every pixel in the ROI for the same two 

SNR levels, and the results are shown in Figure 74.  As with the S1 metric, the added 

noise in the SNR = 200 case washed out any distinct signals, while in the higher SNR 

case, some vehicle pixels could be discerned from the background.  However, the 

differences in S2 values between the vehicles and the background were only about 0.004 

. 

  

Figure 74.  (Left)  S2 metric for ROI in Figure 65 at SNR = 200.  (Right)  S2 metric for the same ROI 

at SNR = 10,000.  In the lower SNR case, the added noise washed out any structure in the signal, 

while in the higher SNR case, the vehicles were barely distinguishable from the background. 
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 In summary, a polarimetric SNR = 200 was simply too low to differentiate 

shadowed vehicles from shadowed background pixels in a scene with both shadowed and 

well-lit targets.  Further, an SNR = 10,000 allowed slight differentiation between 

shadowed target vehicles and nearby shadowed background pixels in the S1 and S2 

metrics—but not in the DOLP.  This disconnect reinforces the idea that results obtained 

by analyzing DOLP as opposed to S1 or S2 are not necessarily equivalent.  Finally, these 

experiments demonstrated that finding shadowed targets with polarimetric sensors—in a 

cluttered, high dynamic range scene—is a tough problem that will require very 

specialized hardware.   

6.7 Section Summary 

This section first described results from the three main experiments outlined in 

Sec. 2.2, then focused on the phenomenological reasons the different algorithms found 

(or missed) different types of targets.  An additional short study examined whether 

sampling issues in DIRSIG or polarimetric SNR contributed more to the inability to find 

shadowed targets.   

The first experiment assumed a spectral and polarimetric sensor mounted on the 

same platform with the images perfectly registered.  Polarimetric information was shown 

to be of little value in the lower GSD multispectral scenario, but to add significant value 

in the higher GSD hyperspectral scenario.  The impact of polarimetric information varied 

significantly with geometry.  In general, the SPI decision fusion algorithm outperformed 

the SPOT pixel fusion algorithm, suggesting an enhanced capability to perform target 

detection with the sensor positioned in the sun’s specular lobe. 
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The second experiment introduced one pixel of registration error between the 

spectral and polarimetric data.  Again, very little improvement was observed in the 

multispectral scenario.  In the hyperspectral scenario, the impact of polarimetric 

information was reduced but a benefit was still observed.  The data fusion algorithms 

were shown to be reasonably robust for a more realistic scenario, with the SPI algorithm 

again outperforming the SPOT algorithm. 

Next, spectral and polarimetric information captured from different perspectives 

were combined to model fusion from separate sensor platforms.  No benefit was observed 

in either the multispectral or hyperspectral case, and the degradation in performance was 

attributed to limitations in registration accuracy.  Future efforts could potentially increase 

the fusion benefit by applying advanced 3-D registration techniques, but those techniques 

are outside the scope of this work. 

Closer inspection of the CEM, TAD and SPI score maps revealed trends about 

which targets were easier or harder to find.  The CEM algorithm easily flagged well-lit 

targets or targets in a homogenous background, but missed shadowed and obscured 

targets or targets in significant clutter.  The TAD algorithm found well-lit edges of 

vehicles particularly anomalous, but also missed shadowed targets.  When the scores 

were combined via the SPI algorithm, the scores of well-lit target pixels in clutter were 

increased to separate bright false alarm background pixels from spectrally mixed pixels.  

The final experiment demonstrated that targets in the shadows were particularly hard to 

find due to the polarimetric SNR being too low, as opposed to insufficient sampling when 

the scene was rendered in DIRSIG.   



 

159 

Although these results provided great insight as to how spectral and polarimetric 

data might be combined to enhance target detection, they were derived from chasing one 

particular target spectrum for fixed GSD values.  Further simulation work was planned to 

evaluate the sensitivity of the fusion algorithms to different target spectra and to a range 

of GSD values.  
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7 Simulation Supporting Multimodal Sensor System Design Requirements 

7.1 Section Overview 

One common approach to building new sensor systems is to recognize the reality 

of fiscal constraints and view cost as an independent variable [Defense Acquisition 

University 2009].  From this point of view, cost is treated as equally important as 

performance and schedule in program decisions.  A primary technique employed by these 

programs is to perform trade-off studies analyzing the performance of a variety of 

different sensor configurations that might fit the need. 

This work has demonstrated a process for assessing the impact of fusing spectral 

data with polarimetric information for an urban target detection application under a 

variety of different sun-target-sensor geometries, and Sec. 6 describes the impact on 

target detection due to spectral and polarimetric data fusion for two specific scenarios.  

However, the GSD, spectral SNR and spectral resolution of the sensor are all factors that 

might affect the performance of the SPI fusion algorithm, and these can easily be varied 

via simulation to conduct performance trade-offs.  Further, it is expected that changing 

the target spectrum will affect performance, so I also sought to assess how robust the SPI 

algorithm is across multiple targets. This section demonstrates how DIRSIG simulations 

allow a design team to isolate the impact of varying one particular parameter of interest 

in a series of trade-off studies, serving as an integral step in considering cost as an 

independent variable in the sensor acquisition process. 
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7.2 Method 

This experiment leveraged the same synthetic scene described in Sec. 4.4, but examined 

the performance of several different sensor combinations.  Both sensing modalities were 

located on the same platform and for these simulations their outputs were perfectly 

registered to each other.  The multispectral sensor employed in this study spanned eight 

uniform spectral response bands that roughly corresponded to DigitalGlobe’s 

WorldView-2 satellite, described in Sec. 4.3, but was evaluated with a range of nadir 

GSDs.  In contrast, the polarimetric imager used in this study had a fixed nadir GSD of 

0.5 m and a uniform spectral response from 0.4 μm – 0.7 μm.  Images of the scene were 

again recorded through a set of four ideal linear polarimetric filters oriented at 0°, 45°, 

90° and -45°, then the polarimetric Stokes vectors were calculated as described in Sec. 

3.6.  The sensor viewing geometries were the same as those described in Sec. 4.5, and the 

measure of merit was the same as described in Sec. 4.9. 

7.2.1 Varying SNR 

The results in Sec 6.2 showed a dependence on spectral SNR values, where a 

multispectral GSD of 0.5 m was used, so the value of additional polarimetric information 

is again expected to vary for different spectral SNR values.  For example, I hypothesized 

that for poorer initial spectral detection estimates, the impact of additional polarimetric 

information may grow.  As described in Sec. 4.3, an SNR of 200 for the mean scene 

signal level was chosen to represent the best-case spectral SNR in this study, while lower 

spectral SNR values of 100, 80 and 50 were also examined. Meanwhile, the polarimetric 

SNR value was held constant at 200 for all cases. To isolate the impact of varying SNR, 

the sensor nadir GSD values in this study were fixed at 3 m for the multispectral sensor 
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(yielding values ranging from 3.1 m to 25.6 m for the off-nadir views) and 0.5 m for the 

polarimetric sensor (yielding values ranging from 0.51 m to 4.3 m for the off-nadir 

views). 

7.2.2 Varying Spectral GSD 

Besides the system SNR, another factor that should impact performance is the 

GSD.  A variety of viewing geometries were identified in Sec. 6.2 where incorporating 

polarimetric information with spectral information would enhance performance, but the 

impact was only quantified for a single GSD value for each spectral resolution.  

Specifically, the scenario with a solar zenith angle of 34°, a sensor zenith angle of 30° 

and a relative azimuth angle of 190° was identified as one of the most promising viewing 

geometries for spectral and polarimetric fusion via the SPI algorithm.  Therefore, an 

experiment was conducted to analyze that scenario repeatedly while varying the spectral 

nadir GSD from 0.5 m to 12 m but holding the polarimetric nadir GSD constant at 0.5 m.  

With these values, the quality of the spectral data ranged from several pure pixels on 

target to mixed pixels to significantly sub-pixel targets.  At each GSD value, the areas 

under the off-nadir CEM and off-nadir SPI ROC curves were calculated. 

7.2.3 Varying Target Spectrum 

A final variable that could significantly affect the fusion results is the target 

spectrum, since it serves as a key input to the CEM algorithm—and thus the SPI 

algorithm.  All inputs were known exactly with the synthetic DIRSIG imagery, so it was 

a straightforward process to flag green station wagons in the scene as the target vehicle 

instead of the original red station wagon.  To isolate the spectral effects, the two vehicles 

were attributed with the same polarimetric BRDF model—meaning the specular (Fresnel) 
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components were the same but the diffuse component varied with the spectral shape of 

each target.  Since the polarization of any diffusely reflected radiance transmitting 

through the first surface interface has been shown to be significant only for very bright 

painted surfaces [Ellis 1996]—not representative of our target vehicles—ignoring these 

interactions in the DIRSIG model should not impact the results.  The SCR metric 

described in Sec. 5.4 was used to quantify how spectrally different each of the two 

vehicles was from the cluttered background, with the polarimetric nadir GSD of 0.5 m 

used, while the nadir multispectral GSD was fixed at 2 m.  Further, both the spectral and 

polarimetric SNR values were fixed at 200.  Each of the viewing geometries examined 

for Sec. 7.2.1 above was then re-examined while searching for the green target vehicle. 

7.3 Results 

When the fusion impact was assessed for the four different spectral SNR levels, 

two distinct trends emerged depending on the flexibility available to task the sensor.  

First, in the scenario where a multispectral nadir image could not be acquired, then the 

off-nadir SPI performance is compared to the off-nadir CEM performance.  Figure 75 

shows that as the spectral SNR decreased, incorporating additional polarimetric 

information via the SPI algorithm was the most valuable for relatively oblique sensor 

zenith angles (40° - 60°) until the sensor zenith angle became so high that the effect of a 

large GSD degraded performance.  Further, this performance impact was only observed 

for two of the four tested solar zenith angles (34° and 55°).  When the sun was extremely 

low in the sky (77° zenith angle), much of the scene was in shadow and the polarimetric 

information provided little—if any—benefit.  Conversely, when the sun was high in the 
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sky (20° zenith angle), the benefit due to incorporating polarimetric information did not 

depend on the spectral SNR.   

 
Figure 75.  The percent increase in area under the ROC curve when using the SPI fusion algorithm 

as opposed to the CEM spectral algorithm for a given off-nadir viewing geometry is shown as a 

function of sensor zenith angle for solar zenith angles of 20° (green), 34° (red), 55° (blue) and 66° 

(black).  The spectral SNR was set to 200 (top left), 100 (top right), 80 (bottom left) or 50 (bottom 

right). 

The second scenario assumed that a multispectral nadir image could be acquired, 

and thus sought to determine whether the off-nadir SPI performance was superior to the 

nadir CEM performance for the same solar zenith angle.  Figure 76 shows that as the 

spectral SNR decreased, incorporating additional polarimetric information via the SPI 

algorithm enhanced performance for moderately oblique sensor zenith angles (20° - 50°), 

with the most impact occurring when the sun was also at a moderately oblique zenith 

angle (34° or 55°).   

SNR = 200 SNR = 100

SNR = 80 SNR = 50
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Figure 76.  The percent increase in area under the ROC curve when using the SPI algorithm off-

nadir as opposed to the CEM algorithm at nadir is shown as a function of sensor zenith angle for 

solar zenith angles of 20° (green), 34° (red), 55° (blue) and 66° (black).  The spectral SNR was set to 

200 (top left), 100 (top right), 80 (bottom left) or 50 (bottom right). 

These two scenarios demonstrated that the viewing geometry where spectral and 

polarimetric data fusion provided the most impact depended on the options available for 

tasking the multimodal sensor.  However, fusing the data via the SPI algorithm provided 

a benefit in both scenarios and further demonstrated the versatility of this simple decision 

fusion algorithm. 

When the impact of varying spectral GSD for a particular off-nadir viewing 

geometry was assessed by examining Figure 77, several key trends emerged.  First, at 

small GSD values, the CEM algorithm performed at least as well as, if not better, than the 

SPI fusion algorithm—demonstrating that even for good polarimetric sensing viewing 

geometries, the extra information from polarimetry doesn’t always add value for target 

SNR = 200 SNR = 100

SNR = 80 SNR = 50
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detection.  Second, although the areas under the CEM and SPI ROC curves both 

decreased as the spectral GSD increased, the difference between the area values grew 

larger.  This behavior meant that as the spectral information became less precise, the 

relative value of polarimetric information increased dramatically.     

 
Figure 77.  The area under the ROC curves generated by the off-nadir CEM (spectral data only—

solid red line), SPI (spectral and polarimetric data—dotted red line) and TAD (polarimetric data 

only—dashed black line) algorithms was calculated for a range of spectral GSD values with the 

polarimetric GSD held constant at 0.5 m. 

Finally, as the spectral GSD became especially large, the CEM and SPI algorithms failed 

differently.  The CEM algorithm completely lost the ability to discern targets, while the 

SPI algorithm performance approached the performance obtained by simply using TAD 

as a target detection algorithm on the polarimetric data.  Although the spectral GSD 

where this occurred was quite large for a target detection algorithm, one could envision 

similar results obtained with a smaller GSD but a much less conspicuous target.  This 
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trend demonstrates the power of multimodal fusion via the SPI algorithm to find targets 

that would never be identified with spectral information alone. 

When the effect of changing the target spectrum was assessed, valuable insight 

was gained by first calculating the SCR values for both target spectra at a nadir spectral 

GSD of 2 m and a nadir polarimetric GSD of 0.5 m.  Figure 78 shows the SCR values for 

both the red and green target vehicles, based on both the spectral reflectance values and 

the polarimetric TAD scores derived from the scene.   

 
Figure 78.  The SCR for the red and green target vehicles were calculated as a function of sensor 

zenith angle for a fixed sensor azimuth angle of 190° and four solar zenith angles:  66° (top left), 55° 

(top right), 34° (bottom left) and 20° (bottom right).  The SCR was derived from either the spectral 

reflectance values (solid lines) or polarimetric TAD scores (dashed lines). 

 

Solar zenith = 66° Solar zenith = 55°

Solar zenith = 34° Solar zenith = 20°
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The polarimetric SCR values were quite similar for both vehicles, but the spectral SCR 

values for the green vehicle were about half of those for the red vehicle—meaning it was 

significantly harder to find the green vehicle with the CEM algorithm.  Further, the peak 

polarimetric SCR values in Figure 78 occurred at different sensor zenith angles for 

different solar zenith angles. Not surprisingly, the target vehicles appeared most 

polarimetrically anomalous when the sensor was positioned near the sun’s specular 

reflection, reaffirming the trend identified in Sec. 6.2.  Additionally, the differences in 

magnitude between the peak polarimetric SCR values at each solar zenith location 

suggest that incorporating polarimetric information may provide the most benefit at a 

solar zenith angle of 34° or 55°. 

The SPI algorithm continued to enhance performance for both target vehicles by 

incorporating additional polarimetric information, although the performance impacts 

were not identical. Several trends were identified.  First, Figure 79 demonstrates that a 

greater relative impact was observed when seeking the green target vehicle.  However, 

fusion did not appear to improve performance for a solar zenith angle of 20° when 

seeking the green target.  Recall that an improvement was only reported if the off-nadir 

SPI algorithm outperformed both the off-nadir CEM and nadir CEM algorithms—at a 

solar zenith angle of 20°, the off-nadir fusion performance was poorer than simply using 

the nadir CEM algorithm.   
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Figure 79.  The percent increase in area under the ROC curve for the red target (left) and the green 

target (right) when using the SPI algorithm off-nadir as opposed to the CEM algorithm off-nadir is 

shown as a function of sensor zenith angle for solar zenith angles of 20° (green), 34° (red), 55° (blue) 

and 66° (black).  The spectral and polarimetric SNR values were set to 200. 

Second, with the spectrally easier to find red vehicle, the SPI algorithm provided a 

relatively constant modest boost in performance off-nadir up to a sensor zenith angle of 

50° as long as the scene was well lit (solar zenith angles = 20°, 34° or 55°).  In contrast, 

for the green target, the SPI algorithm provided a dramatic impact at most sensor zenith 

angles with a solar zenith angle of 34°, but as the sun moved lower in the sky (solar 

zenith = 55° or 66°), the percent improvement peaked at more oblique sensor zenith 

angles (until GSD effects dominated).  Finally, the poorest viewing geometries varied 

depending on the target’s spectral characteristics.  The SPI algorithm produced no 

improvement with the red target when the sun was low in the sky (66°), but aided in 

detecting the green target at the same solar zenith angle.  Conversely, the SPI algorithm 

produced no improvement with the green target when the sun was high in the sky (20°), 

but aided in detecting the red target at the same solar zenith angle.  Therefore, although 

the SPI algorithm is a powerful tool, the target characteristics can significantly influence 

Red Target Green Target
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overall system performance—therefore the trade study scenario should be modeled as 

similar to the envisioned application (i.e. targets and backgrounds) as possible. 

7.4 Section Summary 

A trade study was carried out via DIRSIG simulation to assess how varying the 

spectral SNR, spectral GSD, or target spectrum affected the impact of spectral and 

polarimetric data fusion on a notional multimodal sensor via the SPI algorithm.  When 

varying the SNR, the impact depended on the constraints placed on the sensor’s tasking.  

When forced to image off-nadir, incorporating additional polarimetric information via the 

SPI algorithm was the most valuable for highly oblique sensor zenith angles (40° - 60°).  

However, when free to image at nadir if desired, incorporating additional polarimetric 

information via the SPI algorithm enhanced performance for moderately oblique sensor 

zenith angles (20° - 50°).   

When GSD was varied, polarimetric information helped in some cases but not 

others.  At small GSD values, the CEM spectral algorithm performed at least as well as, 

if not better, than the SPI fusion algorithm, but as the spectral GSD increased, the 

polarimetric information became more valuable.  As the spectral GSD became especially 

large, the CEM algorithm failed to find any targets while the SPI algorithm did, reflecting 

a seamless transition from multimodal fusion to polarimetric target detection.  Changing 

the target spectrum from a red vehicle to a green vehicle, reducing spectral contrast, 

produced variations in the impact due to fusion.  When the spectral SCR decreased, 

incorporating additional polarimetric information became even more valuable at more 

oblique solar zenith angles.  Although the SPI algorithm produced a general increase in 
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performance in both cases, correctly modeling the most likely target(s) for any future 

multimodal system was shown to be an integral part of an accurate design trade-off study.  

In summary, the SNR, GSD and target spectrum trade studies confirmed that as the initial 

spectral information became less precise, incorporating additional polarimetric 

information produced a more significant impact on performance.  Therefore, fusing 

polarimetric data with lower quality multispectral data may provide an alternative to 

constructing a higher quality multispectral sensor for urban target detection scenarios.  

Additionally, the SPI decision fusion algorithm was shown to be robust across a number 

of variations possibly encountered in the multimodal sensor design process.  Finally, the 

results highlight the importance of including simulation efforts in the sensor design 

process.  By exploiting DIRSIG’s capabilities, a team can accurately model a variety of 

complex scene, target and sensor characteristics—hopefully identifying system 

limitations early in the design stages rather than during hardware testing or operational 

missions.  After assessing potential performance via simulation, the next step was to 

perform a small field experiment and apply the fusion algorithms to actual data.  
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8 Field Verification 

8.1 Section Overview 

This section describes an effort to build on the DIRSIG model results from Sec. 6 

with a modest field experiment where the SPOT and SPI fusion algorithms described in 

Sec. 4.8 could be applied to real data.  Since an airborne asset with both multispectral and 

polarimetric capabilities wasn’t available, WASP-Lite and a separate camera with 

polarimetric filters in place were used to image a scene of model cars and bits of urban 

clutter.  Two sets of images were acquired—one under favorable polarimetric viewing 

conditions, and the second when much of the scene was in shadows.  The images were 

then registered to each other and analyzed with both the SPI and SPOT algorithms for 

several different target spectra. 

Two main objectives were identified for this experiment.  First, I sought to 

determine whether incorporating additional polarimetric information enhanced 

multispectral target detection for a viewing geometry identified as favorable by DIRSIG 

in Sec. 6.  Second, I wanted to determine whether spectral and polarimetric data fusion 

could be used to find shadowed targets in real data, since the DIRSIG simulation results 

discussed in Sec. 6.5 suggested that the SPI algorithm would miss shadowed targets. 

8.2 Scenario Design 

The DIRSIG results from Sec. 6 indicated that spectral and polarimetric data 

fusion should enhance target detection when the sensor was located in the sun’s specular 

reflection lobe.  Further, performance was enhanced most at reasonably oblique sensor 

zenith angles (30°-50°), where the reflected polarimetric signature was increased but the 
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GSD was not too large.  Additionally, polarimetric sensing theory suggests that the 

reflected polarimetric signature for a flat target should be minimized when the sensor is at 

a relative azimuth angle of 90° to the sun [Schott 2009].  Figure 80 shows a site on the 

RIT campus that was identified where both of these conditions could be met (at different 

times of day) without adjusting the scene. 

 

Figure 80.  The ROI for the multispectral / polarimetric data fusion experiment is outlined in red.  

This image shows the conditions for the morning data collect, with a solar zenith angle of 26°, a 

sensor zenith angle of 48°, and a relative azimuth angle between the sensor and the sun of 160°. 

Good polarimetric sensing conditions were represented by a morning data collect where 

all targets were sunlit, with a solar zenith angle of 26°, a sensor zenith angle of 48°, and a 

relative azimuth angle between the sensor and the sun of 160°.  Poor polarimetric sensing 

conditions were created with an afternoon scenario with a solar zenith angle of 35°, a 

sensor zenith angle of 48°, and a relative azimuth angle between the sensor and the sun of 

100°.  In contrast to the morning collect, many of the vehicles were shadowed in the 

afternoon collect. 
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Figure 81.  (Left)  The morning data collect represented favorable polarimetric sensing conditions.  

All vehicles in the scene were sunlit.  (Right)  The afternoon data collect represented poor 

polarimetric sensing conditions.  Additionally, many of the target vehicles were shadowed. 

This experiment was intended as a simple proof-of-concept experiment, so I was 

limited to using available RIT assets and a representative model environment.  The 

vehicles in the scene were red, blue, silver, gray and yellow 1:32 scale die cast metal 

model cars shown in Figure 82.   

 

Figure 82.  The vehicles staged throughout the scene were 1:32 die cast metal model cars. 

Reflectance measurements of the vehicles were made under direct sunlight before the 

imagery was collected.  Next, sample sections of siding material, roofing material, 
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asphalt, brick and smooth wooden boxes were also inserted in the scene to create clutter 

representative of an urban environment.  Finally, a black felt panel and a measured spray-

painted white panel were inserted into the scene for atmospheric compensation via ELM 

as in Sec. 4.7. 

8.3 Image Acquisition 

Multispectral imagery was acquired by placing different spectral filters over five 

of the individual cameras in the WASP-Lite sensor.  The resulting spectral bands were 

Gaussians with a FWHM of 10 nm centered at 436 nm, 550 nm, 650 nm, 750 nm and 870 

nm.  The WASP-Lite sensor was mounted on the roof of Building 76, and a digital level 

was used to record the sensor zenith angle.  Several test images were taken to calibrate 

the instrument gain so that no pixels in the scene were saturated, and this gain value was 

fixed for both the morning and afternoon scenarios.  The WASP-Lite images were 

acquired simultaneously, but the different cameras were inherently mis-registered and 

had different fields of view.  To create a multispectral image cube, the individual images 

were registered to the green band by manually selecting ground control points in ENVI, 

then applying a rotation-scale-translation calculation with nearest neighbor interpolation.  

Figure 83 shows the RGB representations of the registered multispectral imagery for both 

the morning and afternoon data collections.  Some artifacts are apparent where the edge 

of the roof clipped the field of view (FOV) for certain spectral channels but not others.  

Additionally, the sensor was repositioned between the two imaging scenarios, so the 

morning and afternoon images are not perfectly aligned with each other. 
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Figure 83.  (Left)  Registered RGB WASP-Lite bands captured during the morning scenario.  (Right)  

Registered RGB WASP-Lite bands captured during the afternoon scenario.  

Polarimetric imagery was acquired by placing a linear polarizer in front of an IR 

cutoff filter to create a filtered panchromatic image.  Several test images were taken to 

calibrate the instrument gain so that no pixels in the scene were saturated, and this gain 

value was fixed for both the morning and afternoon scenarios.  The linear polarizer was 

rotated from 0° to 135° in 45° increments, with an image captured after each rotation.  

After the four images were captured, the filtered intensity images were converted to a 

Stokes vector for each pixel using the modified Pickering method described in Sec. 3.6.  

The division-of-time approach ensured the maximum polarimetric spatial resolution, but 

potentially introduced artifacts due to registration error (from adjusting the polarizer 

between images) or due to changes in the atmosphere between images.  Figure 84 shows 

the processed S0 images for both the morning and afternoon data collections.  As with the 

multispectral sensor, the polarimetric sensor was repositioned between the two imaging 

scenarios, so the morning and afternoon images are not perfectly aligned with each other. 
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Figure 84.  (Left)  Processed S0 image derived from the morning scenario.  (Right)  Processed S0 

image derived from the afternoon scenario.   

 Once the registered multispectral and polarimetric image cubes were assembled, 

the multispectral image was registered to the polarimetric data to create a fused dataset 

and ensure target detection could be done at the higher spatial resolution.  Figure 85 

shows RGB images of the fused datasets. 

 

Figure 85.  (Left)  RGB image of multispectral data registered to the polarimetric imagery derived 

from the morning scenario.  (Right)  RGB image of multispectral data registered to the polarimetric 

imagery derived from the afternoon scenario. 

The multispectral imagery had a GSD roughly three times as large as the polarimetric 

imagery, so using a nearest-neighbor interpolation produced a somewhat blocky final 

image.  Also, since the multispectral FOV was different than the polarimetric FOV, some 

objects (like the side of the building) were present in one image, but not the other.  
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However, this was anticipated—four specific siding tiles placed in the scene served as the 

boundary of the scene ROI, and the multispectral imagery was able to capture the entire 

ROI.  Areas outside the ROI were disregarded during registration.  Finally, a rectangular 

spatial subset of the fused dataset was extracted to ensure every pixel tested had valid 

multispectral and polarimetric data, and the multispectral data was converted to the 

reflectance domain using ELM as shown in Figure 86.   

 

Figure 86.  (Left)  The green band of the cropped fused morning data subset is shown as an intensity 

image after converting to reflectance values.  (Right)  The green band of the fused afternoon data 

subset is shown as an intensity image after converting to reflectance values. 

8.4 Scene Clutter Assessment 

Once the fused dataset had been constructed, the first step was to analyze the 

scene using the SCR metric defined in Sec. 5.4 to determine whether enough spectral and 

polarimetric clutter was present.  Target ROIs were defined for each of the five different 

colored vehicles, and SCR values based on the multispectral imagery, TAD score and 

DOLP were computed for both the morning and afternoon cases, and the results are 

displayed in Table 14 and Table 15. 
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Table 14.  The SCR metric was computed for the morning scene based on the multispectral data, 

TAD score, and DOLP value. 

Model Car MS SCR (am) TAD SCR (am) DOLP SCR (am) 

Blue 4.51 1.31 0.39 

Grey 1.58 1.50 0.20 

Red 2.53 3.93 0.51 

Silver 5.09 6.09 0.39 

Yellow 3.18 3.68 0.46 

   

Table 15.  The SCR metric was computed for the afternoon scene based on the multispectral data, 

TAD score, and DOLP value. 

Model Car MS SCR (pm) TAD SCR (pm) DOLP SCR (pm) 

Blue 2.52 0.48 0.58 

Grey 0.98 0.07 0.84 

Red 0.66 1.73 0.25 

Silver 2.96 3.33 0.15 

Yellow 1.12 0.17 0.16 

 

The SCR values of the real data highlight three main points. First, the SCR values 

from this field collect were much lower than the SCR values in either the DIRSIG or 

COMPASS data described in Sec. 5.4.  However, recall that Sec. 7.2.3 showed the SCR 

metric was sensitive to the target vehicle spectrum, so the different SCR values for each 

target were not unexpected.  Since the SCR values demonstrated that the model cars in 

the field collect were harder to find than the vehicles in the DIRSIG data, this experiment 

perhaps underestimated the effectiveness of data fusion in an actual urban scenario.  

Second, the TAD SCR values were generally higher than the DOLP SCR values, 

confirming the DIRSIG trend that identified TAD as a better choice to find vehicles.  One 

possible explanation was that for a fixed DOLP value, the TAD score could vary based 

on the differences between the S1 and S2 values—in effect, TAD provided more degrees 

of freedom to analyze the data.  Third, the SCR values generally decreased from morning 
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to afternoon.  On the spectral side, the decrease was likely due to the signatures from 

vehicles in shadow becoming more similar to nearby background pixels.  

Polarimetrically, the decrease implied either a reduction in contrast between the reflected 

polarimetric signature and the upwelled radiance or the increased influence of the pBRDF 

(due to the downwelled radiation) as opposed to simply relying on the specular 

reflection—regardless, these SCR values predicted that the shadowed targets would be 

harder to find with polarimetric remote sensing.  Once the scene was determined to have 

a reasonable amount of clutter, the fused datasets were analyzed with the CEM, SPOT 

and SPI algorithms. 

8.5 Fusion Algorithm Evaluation 

The first step in evaluating target detection performance was to define a target 

mask ROI for each of the five model vehicle types in the scene. Then, the fused datasets 

were evaluated for each of the different target vehicles as described in Sec. 4.9, except 

the ROC curve FAR threshold was increased from 0.001 to 0.01 because of the generally 

weak performance of all the test algorithms.  A percent improvement in target detection 

was calculated based on the areas under the test algorithm ROC curves for each different 

target vehicle as shown in Eq. 43: 

 

The fusion algorithms produced the most dramatic impact when the silver vehicle 

was identified as the target, so all graphics presented in this section reflect that scenario.  

Figure 87 shows the multispectral CEM scores for both the morning and afternoon scenes 

as intensity images, with brighter pixels being ranked as more target-like.  Besides the 
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silver vehicles in the scene, several bright man-made objects were accidentally flagged as 

targets.  Additionally, the contrast between high and low CEM scores was much lower in 

the afternoon than in the morning scenario. 

 

Figure 87.  The MS CEM score maps are shown as intensity images, with brighter pixels being 

ranked as more target-like.  (Left) Morning (Right) Afternoon 

Figure 88 shows the DOLP for each pixel in the morning and afternoon scenes as 

intensity images, with brighter pixels representing more polarizing materials.  In the 

morning scene, some vehicles contained pixels with relatively high DOLP, but vehicles 

were less polarizing in the afternoon scene.  The difference in polarimetric signature was 

due to the combination of a shift in the sun-target-sensor geometry and the targets 

changing from sunlit to shadowed.  Additionally, the DOLP in the shadowed grass for the 

afternoon scene appeared higher than the DOLP for well-lit grass.  This enhanced DOLP 

was likely an artifact resulting from noise in each of the original filtered polarimetric 

images.  The DC values recorded for the scene as seen through each polarimetric filter 

were about six times lower for the shadowed grass than for the sunlit grass.  If the 

thermal noise in the detector was a roughly constant value, then the SNR value changed 
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dramatically between the shadowed and sunlit pixels.  Recall that the DOLP metric was 

derived from the Stokes vectors, which were in turn derived from the polarimetrically 

filtered images.  DC variations due to noise in pixels with low SNR values could result in 

significant differences when the Stokes vectors are created, and then dividing by a small 

number to create the DOLP further magnified the effect of those differences.  The image 

with significant shadowed area represents one of the main challenges with polarimetric 

imaging—if the signal is integrated long enough that noise in the shadowed pixels isn’t 

an issue, there is a significant risk of saturating well-lit pixels unless a very high dynamic 

range detector is used. 

 

Figure 88.  The DOLP values for each pixel are shown as intensity images, with brighter pixels being 

ranked as more polarizing.  (Left) Morning (Right) Afternoon 

Figure 89 shows the TAD score for each pixel in the morning and afternoon 

scenes as intensity images, with brighter pixels representing more anomalous pixels.  In 

the morning scenario, under favorable polarimetric viewing conditions, the vehicles were 

highlighted along with other man-made polarimetric clutter in the scene.  However, in the 

afternoon, the shadowed vehicles were scored much less anomalous than the sunlit 
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vehicles or urban clutter.  This difference in scoring for shadowed vehicles was consistent 

with the DIRSIG results discussed in Sec. 6.5.2. 

  

Figure 89.  The TAD scores for each pixel are shown as intensity images, with brighter pixels being 

ranked as more anomalous.  (Left) Morning (Right) Afternoon 

Figure 90 shows the SPI decision fusion algorithm scores for each pixel in the 

morning and afternoon scenes as intensity images, with brighter pixels representing more 

target-like pixels.  In the morning image, the target vehicles were some of the brightest 

pixels.  However, some bright man-made clutter pixels were still flagged as potential 

targets, because bright false alarms shine through the CEM algorithm and the SPI 

algorithm weights the CEM score more than the TAD score.  Note that with the SPI 

algorithm the nominated target pixels were dramatically separated from the natural 

background materials, and less spectrally obvious, but polarimetrically anomalous, target 

pixels were boosted above some of the bright false alarms.  Further, the shadowed targets 

were still missed with the SPI algorithm—also confirming the performance observed 

with the DIRSIG imagery that was discussed in Sec. 6.5.3. 
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Figure 90.  The SPI decision fusion algorithm scores for each pixel are shown as intensity images, 

with brighter pixels being ranked as more target-like.  Red boxes indicate regions containing the 

vehicles in the scene.  (Left) Morning (Right) Afternoon 

Figure 91 shows the SPOT pixel fusion algorithm scores for each pixel in the 

morning and afternoon scenes as intensity images, with brighter pixels representing more 

target-like pixels.  In the morning scene, using the DOLP metric produced mixed results 

because of Umov’s effect.  The scores of bright man-made false alarms were reduced due 

to their small polarimetric signature, but the scores of dark man-made false alarms were 

dramatically increased.  The overall effect seemed to be a reduction of contrast in the 

scene between target vehicles and background materials.  In the afternoon, a similar 

effect occurred, but the magnitude of the impact was non-uniform because of the sunlit 

versus shadowed DOLP calculation discussed above. 
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Figure 91.  The SPOT pixel fusion algorithm scores for each pixel are shown as intensity images, with 

brighter pixels being ranked as more target-like.  Red boxes indicate regions containing the vehicles 

in the scene.  (Left) Morning (Right) Afternoon 

Next, the multispectral and polarimetric SNR values were calculated for the 80% 

reflector reference panel in both the morning and afternoon scenes.  The SNR values for 

the different polarimetric filter orientations were essentially unchanged, while the 

multispectral SNR values were band dependent.  Table 16 summarizes the results, and 

emphasizes that both the polarimetric and multispectral SNR values captured in this 

experiment were far lower than the values applied to the synthetic data described 

previously.  The low multispectral SNR values were due in part to the very narrow 

spectral filter bandpass window (10 nm FWHM) described in Sec. 8.3. 

Table 16.  The SNR values were calculated for the 80% reflector reference panel in the scene.  The PI 

filter orientation affected SNR only minimally, so the average is reported here, while the MS SNR 

varied significantly from band to band. 

Time of 

Day 

PI  

SNR 

Blue  

SNR 

Green 

SNR 

Red  

SNR 

NIR 1 

SNR 

NIR 2 

SNR 

Morning 13 10 4 4 4 4 

Afternoon 10 4 8 2 3 5 
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Finally, the effectiveness of the CEM, SPI and SPOT algorithms for both 

scenarios was assessed via ROC curves.  Table 17 shows the results from the morning 

scenario as a percent difference in area under the fusion ROC curves when compared to 

the area under the CEM ROC curve with each different colored car identified as the 

target vehicle.  Upon initial inspection, the grey vehicle appeared to buck the trend 

displayed by all the other vehicles.  However, a closer examination of the individual ROC 

curves revealed that the grey vehicle was the hardest target to find, and due to the FAR 

threshold defined for this experiment, the percent differences were based on very small 

differences in very small areas under the ROC curve.   

Table 17.  The fusion algorithm effectiveness was assessed in terms of a percent difference in area 

under the ROC curve when compared to the CEM algorithm for each differently colored car in the 

morning scenario. 

Model Car SPI % Improvement SPOT % Improvement 

Blue 1.02 -29.1 

Grey -3.47 105.99 

Red 9.17 -49.42 

Silver 10.81 -70.49 

Yellow 3.58 -14.44 

 

Figure 92 shows the ROC curves generated when seeking the silver car in the morning 

scenario, which demonstrated that the SPI algorithm dramatically enhanced performance 

at low false alarm rates.  In contrast, incorporating polarimetric information via the SPOT 

algorithm significantly degraded performance.   
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Figure 92.  The CEM, SPI and SPOT ROC curves were derived from the morning scenario. 

Table 18 shows the results from the afternoon scenario as a percent difference in 

area under the fusion ROC curves when compared to the area under the CEM ROC curve 

with each different colored car was identified as the target vehicle.  If neither the fusion 

algorithm nor the CEM algorithm found any targets before reaching the FAR threshold, 

the difference in performance was undetermined.  Also, if the fusion algorithm found any 

targets but the CEM algorithm did not, the increase in performance was infinite. 

Table 18.  The fusion algorithm effectiveness was assessed in terms of a percent difference in area 

under the ROC curve when compared to the CEM algorithm for each differently colored car in the 

afternoon scenario.  

Model Car SPI % Improvement SPOT % Improvement 

Blue -20.16 -3.32 

Grey Undetermined Infinite 

Red Undetermined Infinite 

Silver 14.02 -61.7 

Yellow Undetermined Infinite 
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Although the SPOT algorithm produced an infinite improvement for three of the targets, 

the overall performance was still quite poor since only a few target pixels were identified 

before the FAR threshold, and they were only found along with a significant number of 

false alarms.  Figure 93 shows the ROC curves generated when seeking the silver car in 

the afternoon scenario.   

 

Figure 93.  The CEM, SPI and SPOT ROC curves were derived from the afternoon scenario. 

 

In general, a severe degradation in performance was seen when compared to the morning 

scenario, since the 14% improvement with the SPI algorithm was based on small 

variations in the small ROC curve areas.  The poor performance was due to a 

combination of poor sun-target-sensor geometry, which reduced the quality of 

polarimetric info from sunlit targets, and shadows in the scene that minimized the 

spectral and polarimetric signatures from targets.  As in the morning scenario, 
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incorporating polarimetric information via the SPOT algorithm significantly degraded 

performance. 

8.6 Section Summary     

In conclusion, this section described a modest field experiment designed to 

exploit the DIRSIG model results from Sec. 6 and apply the SPOT and SPI fusion 

algorithms to real data.  A small-scale scene was constructed of model cars and bits of 

urban clutter.  Five-band multispectral imagery was captured with WASP-Lite, while 

simultaneous polarimetric imagery was captured by rotating a linear polarimetric filter in 

front of a separate camera using the division of time method.  Two sets of images were 

acquired—one under favorable polarimetric viewing conditions, and the second when 

much of the scene was in shadows.  The images were then registered to each other and 

analyzed with both the SPI and SPOT algorithms for several different target spectra. 

Incorporating additional polarimetric information reasonably enhanced multispectral 

target detection for a favorable viewing geometry, while spectral and polarimetric data 

fusion was ineffective in finding shadowed targets in this experiment with real data.  In 

executing this experiment, it quickly became apparent that the target pose could vary 

dramatically within a scene.  Recent work at RIT suggested that acquiring multiple 

polarimetric images might maximize the ability to discriminate the target from the 

background [Devaraj 2010], so a series of studies were planned to assess the impact of 

incorporating multiple polarimetric images into the spectral/polarimetric fusion process.  
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9 Multi-View Polarimetric Fusion 

9.1 Section Overview 

Previous portions of this work have shown the potential to enhance target 

detection performance by fusing spectral and polarimetric data under a variety of 

different sun-target-sensor geometries.  However, the value added by polarimetric data 

was demonstrated to be quite sensitive to the sun-target-sensor geometry.  Further, since 

the exact target orientation (pose) in any given scene may be uncertain, the results may be 

somewhat pose dependent.  In scenes where wildly different target orientations are 

possible—extreme elevation changes, irregularly shaped targets, etc—the potential exists 

to incorporate polarimetric images obtained from many different sensor zenith angles to 

increase the chances of capturing meaningful polarimetric data [Devaraj 2010]. 

Operational constraints often realistically limit the number of image acquisitions 

possible, so the multiple polarimetric image approach is only viable if a significant 

impact can be realized from a few carefully chosen viewing geometries.  This section 

defines a process to model a particular situation, determines which polarimetric images 

will produce the most impact, quantifies the impact of incorporating polarimetric 

information from additional viewing geometries and evaluates the performance 

degradation introduced by a reasonable degree of registration error.  The process 

described here could be adopted by a simulation team, who could render radiometrically 

accurate synthetic imagery of any scene of interest using the DIRSIG model.  The 

scenario could be further customized by incorporating sensor parameters of interest and 
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any particular target in a variety of likely poses.  After analyzing the synthetic data, 

meaningful image acquisition tasks could then be shared with sensor designers/operators. 

9.2 Multiple PI Image Theory 

Previous results showed that analyzing multiple polarimetric images of the same 

scene, taken at different sensor zenith angles, could enhance anomaly detection 

performance [Devaraj 2010].  A further expansion was to adapt the multiple polarimetric 

image technique to a more realistic target detection scenario including multispectral data 

by developing a way to incorporate polarimetric information from more than one image 

into the SPI algorithm discussed in Sec. 4.8.2.  One conceivable scenario, shown in 

Figure 94, would be a polarimetric sensor flying at a constant altitude towards a point 

above the region of interest, capturing multiple images of the same scene from different 

sensor zenith angles (but constant sensor azimuth angle).  

 

Figure 94.  One sensor platform could potentially capture multiple polarimetric (PI) images of a 

scene in addition to a multispectral (MS) image.  Although the images are obtained from different 

sensor zenith angles SZ1, SZ2 and SZ3, the aircraft altitude is held constant. 

 

MS & PI PI PI

SZ1

SZ2

SZ3



 

192 

The resulting images would then each have a different FOV, and a pixel in each image 

would represent a different GSD.  Since we desire to later fuse the polarimetric data with 

high quality spectral data, the fusion process begins by registering the polarimetric image 

data obtained at the more extreme sensor zenith angles to the polarimetric image data 

obtained closest to nadir. Next, the registered images are spatially resampled, and their 

FOVs are cropped such that only pixels containing polarimetric data from all available 

sensor zenith angles are retained.  Based on the registered, resampled data, the Stokes 

vector for each pixel is calculated as observed from each different set of polarimetric 

images [Schott 2009], and the S1 and S2 elements of these Stokes vectors are 

concatenated into a stacked Stokes vector as shown in Eq. 44: 

 

where SZ1 represents the sensor zenith angle where polarimetric data was obtained that 

was closest to nadir and SZn represents the most extreme sensor zenith angle where 

polarimetric data was obtained.  If SZ1 is also the sensor zenith angle where spectral 

imagery was collected, such that polarimetric and spectral information is present for each 

pixel in the scene, then the new super Stokes vector shown in Eq. 44 can be used as the 

input into the TAD algorithm and fused via the SPI algorithm with the spectral data as 

described in Sec. 4.8.2.  Note that the S0 element has been neglected for this work, since 

it carries contrast information as opposed to information about surface roughness or 

orientation—we already capture brightness in the spectral information, and want to avoid 

flagging pixels as polarimetrically anomalous simply because of brightness. 
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9.3 Multiple PI Assessment Method 

9.3.1 Scenario Modeling 

This work continued to assess the SPI algorithm when applied to the urban target 

detection scenario, where several instances of either a red or green station wagon target 

vehicle were hidden (in varying orientations) amidst a crowded urban background with 

many differently colored decoy vehicles in the synthetic scene as described in Sec. 4.4.  

Once the scene parameters were set, the spectral and polarimetric sensors of interest were 

designed.  Previous work described in Sec. 7.2.2 suggested that the impact of fusing 

spectral and polarimetric information depended in part on the spectral resolution of the 

spectral sensor under evaluation.  Therefore, both multispectral and hyperspectral sensors 

were considered in this effort, with the spectral responses of those notional sensors 

described in Sec. 4.3.  Besides spectral response, the sensor GSD and SNR values must 

be defined.  Both spectral sensors were modeled to produce a nadir GSD of 3 m, while 

the polarimetric sensor was modeled to produce a nadir GSD of 0.5 m.  As before, the 

sensor-reaching radiance was then altered by applying randomly generated zero-mean 

Gaussian noise to each band of the noise-free DIRSIG image to achieve a notional 

detector-limited sensor SNR = 200 for both the spectral and polarimetric data. 

9.3.2 Multiple polarimetric image acquisition and registration 

For this scenario, polarimetric images of the scene were rendered from sensor 

zenith angles of 10° to 70° in 10° increments, while fixing the sensor altitude at 7500 m 

above ground level and the sensor azimuth angle at 190° relative to the sun.  The spectral 

images of interest were rendered at a 10° sensor zenith angle and sensor azimuth angle of 

190°, corresponding to the polarimetric imagery closest to nadir (but at different GSD 
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values).  Each set of sensor viewing geometries was then evaluated at four different times 

of day, where the solar zenith angles corresponded to sun locations for the modeled 

region of Rochester, NY on 23 June 1992 at times of 0700 (66°), 0800 (55°), 1000 (34°) 

and 1200 (20°).  

Each of the polarimetric images were registered and resampled to align with the 

polarimetric image obtained at a sensor zenith angle of 10°.  Because DIRSIG enables the 

user to track the exact scene coordinate represented by a given pixel in an image, the 

resulting registration was close to geometrically perfect.  However, since the GSD 

increased as the sensor zenith angle increased, some small error was introduced as mixed 

pixels from large GSDs were resampled spatially to align with pure pixels at small GSDs.  

Further, at high sensor zenith angles, pixels in the scene (as viewed near nadir) were 

more likely to be occluded by surrounding objects—resulting in no valid polarimetric 

information being recorded for that target from the extreme sensor zenith angle, a 

condition that would occur in an operational setting.  

9.3.3 Polarimetric image quality metric 

The measure of merit for this work was the area under the receiver operating 

characteristic (ROC) curve as integrated to some user defined false alarm rate (FAR), set 

to 0.001 for the entirety of this work.  The first part of this work sought to determine 

whether the adapted multiple polarimetric image analysis technique described in Eq. 44 

produced better results with the complete set of polarimetric imagery described above, as 

opposed to simply using the single polarimetric image obtained simultaneously with the 

given spectral imagery in the SPI fusion algorithm or the solely spectral CEM algorithm. 
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Since we hypothesized that having more polarimetric perspectives should improved 

performance, the next logical step was to determine how many different perspectives 

were required to maximize performance and whether some perspectives were more 

valuable than others.  First, the TAD algorithm described in Sec. 3.10 was applied to the 

stacked Stokes vector defined in Eq. 44, and the TAD scores for every target pixel in the 

image (available from DIRSIG truth data) were arranged in a vector, T, as shown in Eq. 

45: 

 

where the subscript 10…70 indicates that the stacked Stokes vector analyzed by the TAD 

algorithm for this vector was derived from the complete set of rendered polarimetric 

imagery:  sensor zenith angles of 10°, 20°, 30°, 40°, 50°, 60°, and 70°.  Then, target score 

vectors T10, T20, T30, T40, T50, T60, and T70 were calculated—each produced by analyzing 

only the Stokes vectors derived from polarimetric imagery obtained at one particular 

sensor zenith angle.  The process for deriving the vector of target TAD scores based on 

the complete set of polarimetric imagery, T10…70, is depicted graphically in Figure 95.  In 

contrast, Figure 96 demonstrates the process for deriving the vector of target TAD scores 

based on polarimetric imagery obtained from one particular sensor zenith angle, Ti. 
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Figure 95.  The S1 and S2 values for each pixel in the scene, as derived from sensor zenith (SZ) angles 

of 10, 20, 30, 40, 50, 60 and 70 degrees, were combined into a 14 band stack. The TAD algorithm was 

applied to the stacked data cube to identify anomalous pixels, and the T10…70 vector was constructed 

by collecting the TAD scores for each target pixel (T) in the image, while background pixels (B) were 

ignored. 

 

Figure 96.  The S1 and S2 values for each pixel in the scene, as derived from one particular sensor 

zenith (SZ) angle, i, of interest were combined into a 2 band stack. The TAD algorithm was applied 

to the stacked data cube to identify anomalous pixels, and the Ti vector was constructed by collecting 

the TAD scores for each target pixel (T) in the image, while background pixels (B) were ignored. 

The quality of polarimetric information obtained from a particular sensor zenith 

angle was defined as the ability to replicate the target score vector T10…70, shown in Eq. 

45, solely from the polarimetric information obtained at one particular sensor zenith 
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angle.  The quality metric, Q, is derived by projecting a given target score vector derived 

from one polarimetric image, Ti, in the direction of the complete target score vector 

T10…70 via a dot product as shown in Eq. 46: 

 

where avoiding normalizing Ti takes into account both the magnitude and direction of the 

individual score vectors, as opposed to a tool like the spectral angle mapper (SAM), 

which only accounts for direction [Schott 2007].  

Once the quality metric was defined, an experiment was performed to assess its 

effectiveness by comparing the Q rankings from Eq. 46 for each different sensor zenith 

angle to the rank order of the area under the ROC curves produced by the SPI algorithm 

from Sec. 4.8.2.  In this configuration, the spectral imagery input to the CEM algorithm 

was the same for each evaluation (sensor zenith angle of 10°), while the polarimetric 

information input to the TAD algorithm was derived from one of the various sensor 

zenith angles (10°-70°).  Because the only differences in each case came from the TAD 

scores, any variation in area under the ROC curve was due to the different polarimetric 

information incorporated from a particular sensor zenith angle.  

9.3.4 Optimizing sensor image acquisition tasks  

In a perfect world, as many images as desired could be captured for every scene 

of interest—however, operational considerations often limit the number of images that 

can realistically be acquired.  The next step was to show how the simulation results could 

be translated into two meaningful sensor collection parameters, and determine whether 

one or two carefully chosen polarimetric collects could produce a benefit similar to the 
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complete set.  To do so, the sensor zenith angles were rank ordered by their Q values to 

identify which produced the most useful polarimetric information.  Then, the polarimetric 

information from the sensor zenith angles producing the highest and the two highest Q 

values was used to construct either a two or four element stacked Stokes vector (S1 and S2 

derived from each image) as shown in Eq. 47 and Eq. 48: 

 

 

The SPI decision fusion algorithm was then applied to the spectral imagery (sensor zenith 

angle of 10°) and two (or four) element stacked Stokes vector as shown in Eq. 49 and Eq. 

50: 

 

 

The area under the ROC curve was then evaluated for the CEM, SPI10 (xs based solely on 

a sensor zenith angle of 10°), SPIFull (xs based on the entire set of polarimetric 

information sensor zenith angles from 10° to 70°), SPITop1 and SPITop2 algorithms. 

9.3.5 Registration error 

This work on multiple polarimetric images has represented a best-case scenario 

thus far.  However, some amount of registration error is likely in any application where 

images from different perspectives are combined without detailed ground truth data.  

Therefore, the next step was to incorporate varying degrees of registration error into the 
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SPITop2 process described above and determine whether any performance improvement 

could still be attained.  

After the polarimetric images had been registered and spatially resampled as 

described above, a desired number of pixels of registration error (n = 1, 2 or 3) was 

defined by the user.  Since the images could be shifted left (or right) and up (or down) 

from each other, with potentially different effects, an iterative process was begun.  First, a 

random number generator was used to produce a value i = -1, 0 or 1.  Then, the complete 

set of polarimetric images from the first sensor zenith angle was shifted to the right by 

i×n pixels, with negative values representing a shift to the left.  Next, the random number 

generator was used to produce a value j = -1, 0 or 1.  Then, the same complete set of 

polarimetric images from the first sensor zenith angle was shifted downward by j×n 

pixels, with negative values representing an upward shift.  The process was then repeated 

for the complete set of polarimetric images from the second sensor zenith angle.  Since 

the spectral imagery was left unchanged, this process effectively introduced registration 

error between the spectral imagery, the polarimetric imagery from the first sensor zenith 

angle, and the polarimetric imagery from the second sensor zenith angle.  Note that this 

process did not introduce registration error between images acquired with differently 

oriented linear polarimetric filters for a specific sensor zenith angle, because those effects 

are highly sensor dependent.  Further, although the registration error introduced was an 

integer number of pixels for the polarimetric imagery, it represented anywhere from one 

sixth to one half of a pixel of error in the spectral imagery because of the difference in 

GSD values.  
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After the imagery had been shifted as described above, the SPITop2 algorithm from 

Eq. (50) was applied to produce a ROC curve.  Since the randomly directed registration 

error could produce a number of different final imagery combinations, the potential to 

skew the ROC curve results had to be addressed.  Therefore, the image set was analyzed 

multiple times with different seeds in the random number generator, and the area under 

the generated ROC curve was recorded each time.  The standard deviation of the ROC 

curve area values was calculated after each iteration (i.e. for a different seed in the 

random number generator) and once the standard deviation of the ROC curve areas 

changed by less than 3%, the median ROC curve area was identified as a representative 

value. 

9.4 Results 

To assess the quality metric, Q, used to derive the information for SPITop2 above, 

the SPI algorithm from Sec. 4.8.2 was adapted to fix the spectral input to the CEM 

algorithm (obtained from a sensor zenith angle of 10°) while the polarimetric information 

was derived from any one sensor zenith angle (10°-70°).  The results were rank ordered 

to determine which single sensor zenith angles produced the most useful (and 2
nd

 most 

useful) polarimetric image as determined by these different methods.  Table 19 

summarizes the results for the red target, while Table 20 shows the results for the green 

target.  

Table 19.  Top 2 polarimetric sensor zenith angles via different measures of merit (red target). 

Solar zenith angle Polarimetric Q value MS SPI ROC curve area HS SPI ROC curve area 

66° 50° & 30° 50° & 30° 20° & 30° 

55° 50° & 40° 40° & 50° 40° & 50° 

34° 30° & 40° 30° & 40° 30° & 40° 

20° 30° & 20° 20° & 30° 20° & 30° 
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Table 20.  Top 2 polarimetric sensor zenith angles via different measures of merit (green target) 

Solar zenith angle Polarimetric Q value MS SPI ROC curve area HS SPI ROC curve area 

66° 60° & 50° 60° & 40° 20° & 10° 

55° 50° & 40° 50° & 40° 10° & 20° 

34° 30° & 40° 30° & 40° 30° & 20° 

20° 30° & 20° 30° & 20° 30° & 20° 

 

For the red target, the two sensor zenith angles with the highest Q value almost always 

matched the two sensor zenith angles whose polarimetric data resulted in the most area 

under the ROC curve.  However, results for the green target scenario were more complex. 

In the multispectral case, the two sensor zenith angles with the highest Q value again 

almost always matched the two sensor zenith angles whose polarimetric data resulted in 

the most area under the ROC curve, yet in the hyperspectral case there was poor 

agreement between the Q value and the ROC curve areas.  This inconsistency was 

explained by considering the impact of polarimetric information as shown in Figure 97 

and Figure 98—cases where the angles identified by the Q metric generally matched the 

angles used to produce the largest ROC curve areas were those where incorporating 

polarimetric information improved performance.  Alternatively, when the angles 

identified by the Q metric didn’t match the angles used to produce the largest ROC curve 

areas, incorporating any polarimetric information reduced performance.  This result 

emphasized the need to perform a sensor trade study as described earlier in this work to 

isolate generally favorable polarimetric viewing conditions first, and then leverage the Q 

metric to determine the optimal combination of polarimetric imagery.   

When the areas under the ROC curves produced by the CEM, SPI (polarimetric 

imagery obtained simultaneously with the spectral imagery at a sensor zenith angle of 

10°), SPIFull, (using the complete set of polarimetric imagery), SPITop2 (smartly choosing 
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only two polarimetric images to include) and SPITop1 (using only the best polarimetric 

image, often obtained at a different sensor zenith angle than the multispectral image) 

algorithms were compared, several trends were observed.  

Figure 97 shows the results for the multispectral scenario (i.e. using 8 bands). 

Incorporating simultaneous polarimetric information via the SPI algorithm essentially left 

the multimodal system performance unchanged, although a slight increase in 

performance was observed for the red target vehicle as the solar zenith angle was 

decreased.   

 
Figure 97.  The areas under the multispectral ROC curves for the CEM, SPI, SPIFull, SPITop2 and 

SPITop1 algorithms were calculated for both the red and green target vehicles. Acquiring multiple 

polarimetric images generally improved target detection performance, but most of the impact could 

be attained by logically choosing the single best polarimetric image.  

The performance increase with SPI coincided with sensor more likely to be in the sun’s 

specular lobe, consistent with previous findings described in Sec. 6.  In contrast, 
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exploiting the complete set of polarimetric imagery via the SPIFull algorithm produced a 

dramatic increase in performance for both the red and green target vehicle at most solar 

zenith angles.  When using the best two polarimetric viewing geometries (as determined 

by the quality metric, Q) the SPITop2 algorithm generally performed almost as well as the 

SPIFull algorithm.  Finally, simply using the best polarimetric image (SPITop1) produced 

most of the observed increase in performance.  These results demonstrate that although 

multiple-look polarimetric imaging can play a decisive role in enhancing target detection 

performance, and a significant impact can be achieved with only two well chosen 

viewing geometries, there appears to be a diminishing return for the extra effort expended 

to capture the complete series of polarimetric images.  In fact, for some cases, the SPITop2 

approach outperforms the SPIFull approach—indicating we may be adding more noise 

than information by incorporating too many angles.  Finally, incorporating high quality 

polarimetric information seems to help more as the solar zenith angle decreases.  

Although a somewhat counterintuitive finding, the result is partly explained by the fact 

that as the solar zenith angle decreases, the multispectral data acquired in this scenario at 

a sensor zenith angle of 10° is more likely to be obtained near the sun’s specular lobe—

and thus degraded due to spectral whitening.  In those cases, the additional high quality 

polarimetric information is much more likely to improve target detection performance 

because the baseline spectral target detection performance is decreased. 

Figure 98 shows the results for the hyperspectral scenario, where the impact of 

polarimetric information was more complicated.  Note that the hyperspectral CEM 

algorithm performed quite similar to the multispectral CEM algorithm for the red target, 

yet when searching for the green target, the hyperspectral CEM algorithm performed far 
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better than the multispectral CEM algorithm due to the low multispectral contrast of the 

green target.  

 
Figure 98.  The areas under the hyperspectral ROC curves for the CEM, SPI, SPIFull, SPITop2 and 

SPITop1 algorithms were calculated for both the red and green target vehicles. Acquiring multiple 

polarimetric images generally improved target detection performance for the red target, while 

incorporating polarimetric information generally decreased performance for the green target.  In all 

cases, choosing the best two polarimetric images produced essentially the same impact as using the 

complete polarimetric image set. 

Further, when the CEM performance was compared for the red and green target vehicles, 

the areas under the ROC curves were much more similar in the hyperspectral case than in 

the multispectral case.  As expected, the overlap (or lack thereof) between the target 

features and sensor spectral response directly influenced the CEM algorithm 

performance.  When searching for the red target, the results essentially mirrored the 

trends in the multispectral scenario.  However, when searching for the green target, 

incorporating simultaneous polarimetric information via the SPI algorithm decreased 
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performance.  Then, when the complete polarimetric image set was incorporated with 

SPIFull, the performance was only increased for solar zenith angles of 20° and 34°, which 

were also the viewing geometries where the purely spectral CEM algorithm performed 

worst.  Finally, choosing the best two polarimetric geometries using SPITop2 again 

produced generally the same performance as using the complete set.  These results 

demonstrate that the effectiveness of spectral / polarimetric data fusion depends not only 

on the sun-target-sensor geometry, but also on the spectral characteristics of both the 

sensor and the target of interest—further highlighting the utility of a customizable 

simulation process to evaluate performance before building or operationally tasking the 

sensor. 

Finally, the SPITop2 algorithm performance was analyzed to determine the impact 

of multiple polarimetric images when some degree of registration error was incorporated.  

Recall that although the registration error introduced was an integer number of pixels for 

the polarimetric imagery, it represented anywhere from one sixth to one half of a pixel of 

error in the spectral imagery because of the difference in GSD values.  Figure 99 shows 

the results for the multispectral case, demonstrating that incorporating registration error 

degraded fusion performance but still outperformed simply relying on spectral 

information. 
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Figure 99.  The areas under the multispectral ROC curves were calculated for the SPITop2 fusion 

algorithm, with a varying degree of registration error in the polarimetric images, and compared to 

the purely spectral CEM algorithm performance for both the red and green target. Incorporating 

registration error produced some decrease in fusion performance, but still outperformed simply 

relying on spectral information. 

Figure 100 shows the results for the hyperspectral case, again demonstrating that 

the fusion algorithm performance was somewhat target and sensor dependent.  Although 

incorporating registration error produced some decrease in fusion performance for all 

scenarios, fusion still outperformed simply relying on spectral information for the red 

target.   
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Figure 100.  The areas under the hyperspectral ROC curves were calculated for the SPITop2 fusion 

algorithm, with a varying degree of registration error in the polarimetric images, and compared to 

the purely spectral CEM algorithm performance for both the red and green target. Incorporating 

registration error produced some decrease in fusion performance, but still outperformed simply 

relying on spectral information. 

For the green target, incorporating polarimetric information generally degraded 

performance even with perfect registration, so the fusion algorithm’s sensitivity to 

registration error was mostly irrelevant.  This fact highlights exactly how simulated trade 

studies can be useful—rather than devoting resources to minimizing registration errors in 

the scenario with the green target, a design team faced with these results would likely opt 

to use a single-modality hyperspectral sensor. 

9.5 Section Summary 

Although results from Sec. 6 have shown the potential to enhance target detection 

performance by fusing spectral and polarimetric data, the value added by polarimetric 
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data was demonstrated to be quite sensitive to the sun-target-sensor geometry.  

Additionally, since the exact target orientation (pose) in any given scene may be 

uncertain, the results become somewhat scene dependent.  This section described an 

effort to incorporate polarimetric images obtained from multiple sensor zenith angles and 

thereby increase the chances of capturing meaningful polarimetric data in scenes where 

different target orientations are possible.  However, operational constraints often 

realistically limit the possible number of image acquisitions, so the multiple polarimetric 

image approach is only viable if a significant impact can be realized from a few carefully 

chosen viewing geometries. 

This section defined a process to model a conceptual scenario, to determine which 

polarimetric images will produce the most impact, to quantify the impact of incorporating 

polarimetric information from additional viewing geometries and to evaluate the 

performance degradation introduced by a reasonable degree of registration error.  

Variations of the SPI decision fusion algorithm were described, adapting the decision 

fusion process to accept information from multiple images as inputs, with each image 

taken from a different viewing geometry.  A metric was introduced to assess the quality 

of off-nadir polarimetric information—balancing the increased ability to detect 

polarimetric target signatures with the degradation in performance due to increasing the 

sensor GSD.  After logically identifying two sensor zenith angles for capturing 

polarimetric imagery, a minimal return on investment was observed when additional 

polarimetric imagery was captured from a full set of sensor zenith angles.  Finally, 

incorporating a modest amount of registration error between each of the polarimetric 
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images and the spectral image degraded fusion performance to some degree, but often 

still outperformed simply relying on spectral information. 

This process was developed for use by sensor design/tasking teams, who could 

render radiometrically accurate synthetic imagery of any target/background scenario of 

interest using the DIRSIG model.  The scenario could be further customized by 

incorporating sensor parameters of interest and any particular target in a variety of likely 

poses.  After analyzing the synthetic data, meaningful sensor design and/or acquisition 

tasks could then be shared with sensor developers/operators. 
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10 Conclusion 

The studies presented in this dissertation leveraged DIRSIG’s radiometrically 

sound simulation capabilities to explore the impact of fusing spectral information with 

polarimetric information for an urban target detection application.  A synthetic scene was 

designed and then validated both quantitatively and qualitatively.  Two novel methods of 

fusing the data types were developed, and the effectiveness of each was assessed under a 

wide variety of specific scenario conditions.  Several general trends were observed, with 

performance depending on sensor GSD, SNR and spectral resolution while also varying 

with the chosen target spectrum.  A modest field experiment was carried out to apply the 

fusion algorithms in a more realistic setting.  Finally, a method leveraging simulation was 

defined to assess the impact of incorporating multiple polarimetric images into the 

multimodal fusion process.  The results from both synthetic and real data suggest that a 

niche mission might be available for emerging polarimetric remote sensing capabilities.   

When fusing the data at the pixel level, the SPOT algorithm effectively treated the 

DOLP as another spectral band in a scaled matched filter target detection algorithm. 

Although useful when information from only a few spectral bands was available, the 

polarimetric information was weighted significantly lower than the spectral information.  

Further, the SPOT algorithm required the assumption that the target of interest was the 

most polarizing object in the scene.  In contrast, the SPI algorithm was designed to fuse 

polarimetric and spectral information at the decision level.  The spectral information was 

analyzed via a scaled matched filter algorithm, while the polarimetric information was 

analyzed with an anomaly detection algorithm based on graph theory.  Each pixel was 

then scored by combining the results of both the spectral and polarimetric algorithms, 
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weighted roughly evenly, while permitting the spectral information veto power.  The SPI 

algorithm assumed the target pixel was among the most polarimetrically anomalous 

pixels in the scene, which seemed reasonable if searching for a civilian vehicle in an 

urban environment.  Typically, the SPI decision-level fusion algorithm outperformed the 

SPOT pixel-level fusion algorithm. 

A series of trade studies was carried out to assess how varying the spectral SNR, 

spectral GSD, or target spectrum affected the impact of spectral and polarimetric data 

fusion via the SPI algorithm for a notional multimodal sensor.  When varying the SNR, 

the impact depended on the constraints placed on the sensor’s tasking.  When spectral 

GSD was varied, the benefit of incorporating polarimetric information increased as the 

GSD increased.  However, a threshold GSD was identified beyond which no benefit was 

observed. Reducing the target/background spectral contrast by changing the target 

spectrum from a red vehicle to a green vehicle produced variations in the impact due to 

fusion, although the SPI algorithm produced a general increase in performance in both 

cases.  The trade studies demonstrated that incorporating additional polarimetric 

information may enable suitable performance with a less capable multispectral sensor.  

A field experiment was designed to exploit the DIRSIG simulation results and 

apply the SPOT and SPI fusion algorithms to real data by constructing a small-scale 

scene of model cars and bits of urban clutter.  Five-band multispectral imagery was 

captured with WASP-Lite, while simultaneous polarimetric imagery was captured by 

rotating a linear polarimetric filter in front of a separate camera using the division of time 

method.  Two sets of images were acquired—one under favorable polarimetric viewing 

conditions, and the second when much of the scene was in shadows.  The images were 
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then registered to each other and analyzed with both the SPI and SPOT algorithms for 

several different target spectra.  Incorporating additional polarimetric information 

reasonably enhanced multispectral target detection for a favorable viewing geometry, 

while spectral and polarimetric data fusion was ineffective in finding shadowed targets in 

the real data. 

Next, a process was defined to model a particular set of image acquisition 

scenarios, to determine which polarimetric image (from a set of many) will produce the 

most impact on target detection performance, to quantify the impact of incorporating 

polarimetric information from multiple viewing geometries and to evaluate the 

performance degradation introduced by a reasonable degree of registration error. 

Variations of the SPI decision fusion algorithm were described, adapting the decision 

fusion process to accept information from multiple images as inputs—with each image 

taken from a different viewing geometry. A metric was introduced to assess the quality of 

off-nadir polarimetric information—balancing the increased ability to detect polarimetric 

target signatures with the degradation in performance due to the increased sensor GSD. 

After logically identifying the best two sensor zenith angles for capturing polarimetric 

imagery, performance improved by exploiting those angles but a minimal return on 

investment was observed when additional polarimetric imagery was captured from more 

than two sensor zenith angles. Finally, incorporating a modest amount of registration 

error between each of the polarimetric images and the spectral image was shown to 

degrade fusion performance slightly, but often still outperform spectral information 

alone. 
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Through the evaluations described above, this dissertation demonstrated a 

generalized approach to performing trade space evaluations via synthetic image 

generation tools.  In the remote sensing community, polarimetric capabilities are often 

seen as a tool without a widely accepted mission.  The results in this work essentially 

suggest that polarimetric information may be leveraged to restore the capabilities of a 

spectral sensor when forced to image under less than ideal circumstances.  Separately, 

this works makes a compelling case for simulation as an attractive tool in designing 

cutting-edge systems because of the sheer volume of data required for a reasonable trade 

study, especially when multimodal sensors are considered.  The generalized analysis 

method presented here will allow system designers to tailor future target and sensor 

parameters to their particular scenarios of interest, ensuring that resources are best 

allocated without the delays associated with constructing a variety of different prototypes.  
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